Основные направления развития машиностроения. Теоретические основы технологии машиностроения Развитие технологии машиностроения

Современное машиностроение транспортный комплекс в МЭВ 90-е годы инвестиционный процесс в машиностроительном комплексе развитых стран характеризовался дальнейшим усиле­нием притока капитальных вложений в наукоемкие отрасли, уве­личением доли расходов на средства комплексной автоматизации производственных процессов, резким сокращением инвестиций на расширение традиционных отраслей.

Интенсификация процесса технического перевооружения ма­шиностроения индустриально развитых стран, существенное по­вышение уровня его автоматизации, широкомасштабное распро­странение новейших форм организации и управления производ­ством, интенсификация использования техники и технологии получат свое развитие и в первое десятилетие XXI в.

Автоматизация в той или иной мере будет охватывать все су­ществующие типы производства в машиностроении, независимо от уровня их серийности. Со второй половины 90-х годов нача­лось ускоренное развитие автоматизированной сборки, что озна­чает новый этап в создании компьютеризированных интегриро­ванных производств.

Численность станочного парка в отраслях машиностроения индустриально развитых стран будет иметь долговременную тен­денцию к сокращению при одновременном увеличении его про­изводственной мощности и технико-экономической эффективнос­ти. около 40-50% общей суммы ежегодных валовых капита­ловложений в обрабатывающую промышленность (44% в 1985 г.). Доля инвестиций в активную часть основного капитала будет, оче­видно, на протяжении всего прогнозного периода оставаться не­изменно высокой (в среднем около 80%). В то же время преобла­дающая часть капиталовложений будет, как правило, направлять­ся на замену и модернизацию оборудования, хотя не исключены периоды активного нового строительства, когда в расширение производственных мощностей будет вкладываться больше средств, чем на модернизацию. США занимают лидирующее положение в мире по масштабам производства продукции машиностроения. На долю США приходится около 45% производственных мощностей предприятий машиностроения в развитых странах, в то время как на долю ФРГ, Франции, Великобритании и Италии - 36%, Япо­нии - 19%.

Фактором, несколько сдерживающим дальнейшее увеличение доли машиностроения в обрабатывающей промышленности всех рассматриваемых стран, является продолжающееся выделение из машиностроения в сферу услуг, производственную инфраструк­туру таких функций, как программирование и обслуживание элек­тронно-вычислительной техники и автоматизированного проек­тирования и управления; проектирование сложных производст­венных систем и локальных сетей связи; оказание услуг в инжиниринге, лизинге, подготовке кадров; консультационные услуги и т.п

Среди машиностроительных отраслей в центре современной государственной промышленной политики в рассматриваемых странах стоят авиаракетно-космическая промышленность (АРКП), микроэлектроника и автомобилестроение. Именно эти отрасли играют и, по всей видимости, сохранят в рассматриваемой пер­спективе ключевую роль в развитии не только машиностроения, но и всей экономики ведущих стран Запада как важнейшие "по­ставщики" базисных технологий (микроэлектроника и АРКП) и центр сосредоточения широчайших кооперационных связей в эко­номике стран в целом (автомобилестроение).

Государственное регулирование указанных отраслей осуществляется по двум основным направлениям - по линии стимулирова­ния инновационного процесса и путем реализации различных мер, включая протекционистские, с целью облегчения национальным фирмам условий конкуренции на внутреннем и внешних рынках.

Последние данные западных исследований показывают, что военно-технический прогресс в этой сфере все больше расходит­ся с гражданским, и эффект "spin-off" оказывает весьма ограни­ченное влияние на научный потенциал и конкурентоспособность гражданского самолетостроения США. Доминирование этой стра­ны на мировом рынке гражданской авиатехники обусловлено не государственной поддержкой,а многолетним опы­том, полным использованием эффекта масштаба производства и обусловленной этим экономией на издержках.

Контрастом к опыту США выглядит государственная политика в области гражданского авиастроения в Западной Европе и Япо­нии. В этих странах данная отрасль активно поддерживается госу­дарством, что обеспечило западноевропейским странам возмож­ность потеснить США на мировом рынке авиатехники, а Японии - необходимые условия для будущего выхода на этот рынок.

В Японии эта поддержка осуществляется в рамках политики "мелких шагов" и стимулирования интенсивного кооперирова­ния с США. Уже в 50-х годах японские фирмы выступали в каче­стве субпоставщиков фирмы "Боинг", которая была заинтересо­вана в создании в Японии мощностей по обслуживанию и ремон­ту своих самолетов. Министерство промышленности и внешней торговли поддерживало отечественные фирмы двояко: путем ис­ключения возможности конкуренции между ними и стимули­рованием кооперирования. В 1986 г. в стране был принят специ­альный "Акт содействия развитию авиации", предусматривающий предоставление фирмам льготных кредитов через вновь создан­ный фонд. Эти кредиты использовались для разработки и произ­водства реактивных пассажирских самолетов средней грузо­подъемности и возвращались лишь после успешного завершения проекта.

Государственное регулирование микроэлсктронной отрасли осуществляется в развитых странах в основном в рамках федераль­ных инновационных программ.

В последнее время странами ЕС принят целый ряд крупных программ, призванных ускорить разработку и распространение в производстве новейших видов микроэлектронной техники и тех­нологии с целью преодоления отставания в этой сфере от Японии и США.

В то же время в последние годы в рассматриваемых странах отмечается процесс коренного пересмотра концепции государственного стимулирования машиностроительных отраслей, вклю­чая и переосмысление роли крупных государственных инноваци­онных программ, осуществляемых с целью достижения нацио­нальных (региональных) преимуществ в тех или иных приоритет­ных технологиях. В условиях прогрессирующей интернационали­зации производства в машиностроении Запада идет активный про­цесс слияния и поглощения фирм, который облегчает межгосу­дарственную диффузию результатов работ по программе и резко снижает эффективность государственного вмешательства в дан­ную сферу.

В качестве альтернативы узконациональному подходу к госу­дарственной политике в области машиностроения практически повсеместно рассматривается расширение поддержки интенсив­ного кооперирования между фирмами, как оно уже сегодня прак­тикуется, например, в микроэлектронике между США и Японией или между Японией и ФРГ в области разработки динамического ЗУ с произвольной выборкой емкостью 64 Мбайт.

Если в микроэлектронике и АРКП государственное регулиро­вание осуществляется практически во всех странах двояко - как путем внешнеторговой защиты, так и принятием мер по непо­средственному стимулированию национальных фирм (в АРКП США - за счет государственных заказов на вооружения), под­держка автомобилестроению во всех странах главным образом оказывается через внешнеэкономический инструментарий. Само становление автопромышленности Японии было во многом обес­печено поддержкой правительства, вплоть до 1988 г. практически полным закрытием внутреннего рынка страны от американских и западноевропейских конкурентов, включая запрет иностранных инвестиций в эту ключевую отрасль экономики.

Развитие машиностроительного комплекса органически связа­но с интенсификацией научно-исследовательской деятельности. Активизация НИОКР обусловлена сокращением жизненного цикла товаров, обострением конкуренции, усложнением научных про­ектов, приобретающих в массе своей междисциплинарный харак­тер. В настоящее время США тратят на НИОКР в машиностроении больше, чем Япония, ФРГ и Великобритания вместе взятые. По абсолютной величине годовые расходы на НИОКР в США в целом по машиностроительному комплексу сопоставимы с сум­марными капиталовложениями в основной капитал машинострое­ния, а в отдельных отраслях даже превышают их. Наиболее бы­стрыми темпами растет объем научных исследований и разрабо­ток в новых, наукоемких отраслях машиностроения, таких, как АРКП, электронная промышленность, производство ЭВМ, при­боростроение. Общая величина годовых затрат на НИОКР в этих секторах машиностроения в 1994 г. достигла в США около 50 млрд. долл., что составило свыше 70% всех затрат на НИОКР ма­шиностроительного комплекса по сравнению с 63% в 1970 г. Бы­стро наращивает свой научно-технический потенциал Япония. Если в середине 70-х годов он оценивался в 30% к американскому уровню, то в середине 90-х достиг уже 41%.

В группе традиционных отраслей в Японии (общее, транспорт­ное машиностроение) главными направлениями качественного совершенствования продукции в прогнозном периоде, видимо, будут повышение надежности, безопасности, экологической чис­тоты, энергетической экономичности, производительности машин и оборудования, использование автоматизированных систем уп­равления работой основных агрегатов на базе микропроцессор­ной техники.

В странах ЕС суммарная доля электротехнической промыш­ленности (включая производство ЭВМ и радиоэлектронику), при­боростроения и АРКП в общем объеме продукции машинострое­ния, по имеющимся оценкам, в среднем увеличится с 40% в 1990 г. до примерно 50-55% в 2015 г., в том числе собственно производ­ство ЭВМ - с 7 до 15% в том же году.

В Японии объем производства промышленных роботов возрас­тет, по нашим расчетам, за 1991-2015 гг. примерно в десять раз, а станков с ЧПУ - в четыре раза, что потребует более высоких по сравнению с общим машиностроением темпов наращивания мощ­ностей соответствующих производств. Опережающее развитие по­лучит и электротехническая промышленность.

4. Транспортный комплекс: основные направления развития на перспективу

Финансирование транспортного комплекса в промышленно раз­витых странах традиционно является одной из приоритетных функ­ций государства, ибо транспорт, наряду с энергетикой и связью, является всеобщей важнейшей базой нормальной деятельности производства и социальной среды в государстве. Как показывает мировой опыт, государство не может снять с себя ответственность за развитие транспорта общего пользования и отказаться от эле­ментов регулирования важнейших направлений его хозяйствен­ной деятельности. В сфере капиталовложений оно или прямо уча­ствует в инвестиционном процессе, или берет на себя функции регулирования деятельности частного капитала по привлечению средств на транспорт.Важное значение с точки зрения влияния на инвестиционный процесс на транспорте оказывает научно-технический прогресс. Под воздействием НТП существенно изменилась роль основных фондов транспортного комплекса, которые в количественном от­ношении достигли необходимого уровня развития и адекватно удовлетворяют потребности населения и экономики промышлен­но развитых стран в перевозках. В связи с этим инвестиции в основном направляются на обеспечение не экстенсивного, а ин­тенсивного развития транспорта: повышение доли технически усо­вершенствованных путей сообщения и транспортных средств, бо­лее широкое распространение прогрессивных технологий, обес­печивающих рост производительности труда работников данной сферы и качества обслуживания.

Такие изменения в инвестировании сопровождались сокраще­нием общих объемов капитальных вложений на транспорте США, ФРГ и Японии. В то же время на отдельных видах транспорта, наиболее приспособленных к структурной перестройке хозяйст­ва, наблюдалась некоторая активизация инвестиционной деятель­ности.

Городской транспорт субсидируется в основном государством, региональными и местными органами власти. Однако их участие в этом различно. В одних странах государственные инвестиции обеспечивают всю сумму единовременных и текущих затрат (Бель­гия, Голландия), в других они практически не используются (Ка­нада, Дания, Великобритания).

В долгосрочной перспективе в странах с рыночной экономи­кой ожидается дальнейшее развитие научно-технического прогрес­са на транспорте. Структура сети путей сообщения претерпит су­щественные изменения. Протяженность малодеятельных и нерен­табельных железнодорожных линий и участков будет сокращать­ся. В то же время предполагается сооружение ряда новых, в ос­новном скоростных, линий. Ожидается развертывание работ по электрификации железных дорог. Длина автомобильных дорог с твердым покрытием увеличится. Основное внимание будет уделе­но совершенствованию существующей сети. Увеличится количе­ство аэропортов (в основном грузовых) и протяженность внут­ренних авиалиний. В США возрастет протяженность трубопрово­дов, в первую очередь - газо- и нефтепроводов. Как в США, так и в западноевропейских странах на внутреннем водном транспор­те предстоят гидротехнические работы, реконструкция портов. На морском транспорте предусматривается модернизация портов.

Существенные изменения произойдут в парке транспортных средств. Их численность несколько возрастет, и заметно увели­чится доля прогрессивных видов тяги. Повысятся доля специали­зированного подвижного состава, его грузоподъемность и удель­ная мощность.

В области взаимодействия различных видов транспорта будут совершенствоваться существующие и создаваться новые средства для бссперегрузочных сообщений "от двери до двери", охваты­ваться контейнеризацией перевозок не только генеральные, но и значительная часть массовых грузов, объединяться автоматизиро­ванные информационные системы разных видов транспорта, со­оружаться объединенные системы разных видов транспорта, объ­единенные вокзалы и перегрузочные терминалы улучшенной пла­нировки и др.

Научно-технический прогресс на транспорте позволит сущест­венно улучшить его экономические показатели, повысить качест­во обслуживания клиентуры и безопасность движения. На транс­порте намечается широкое использование маркетинга, изучение спроса, введение учета потребностей, применение моделирова­ния и т.д. Ожидается освоение на всей сети путей сообщения ком­пьютерной системы Райлинка (соединяющей между собой в на­стоящее время железные дороги, клиентов и банки) или другой аналогичной ей системы, что позволит включить транспорт в сеть коммерческих обменов.

В странах Европейского союза предстоит большая работа по совершенствованию стандартов на транспорте, особенно железнодорожном. От исследований в области создания электровозов, работающих на нескольких системах тока, по-видимому, перей­дут к работам по совместимости аппаратуры, устанавливаемой на локомотивах, полевой аппаратуры и системы спутниковой связи. Предстоит также продолжить работу по обеспечению совмести­мости информационных систем, чтобы связать между собой на­циональные компьютерные сети.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

2.Место дисциплины «Технологии машиностроения» в классификации современных наук

3. Формирование знаний о технических науках

4. История развития НАУКИ О технологии машиностроения

Список литературы

ВВЕДЕНИЕ

Машиностроение - область производства, которая создает машины, оборудование, аппараты, приборы, механизмы, вычислительную технику, транспортные средства; одним словом большую часть предметов производства и потребления, применяемых и используемых в процессе жизнедеятельности человека повсеместно. Продуктом различных отраслей машиностроения являются изделия, как средства производства (станок, пресс, трактор, вертолет и т.д.) или детали изделия (колесо, руль, вал и т.д.), так и предметы потребления - автомобиль, холодильник, компьютер и т.п. Машиностроение включает также металлообработку, ремонт машин и оборудования.

Машины окружают нас повсюду, с их помощью поддерживаются привычные условия жизни: подается вода, электроэнергия, тепло; производятся продукты питания, предметы одежды и обихода. Жизнь человека трудно представиться без машин, они являются помощниками, а иногда и заменяют человеческий труд. Диапазон изделий весьма широк: от пружины часов или микроэлектронной схемы, которые весят малые доли грамма, до роторов мощных турбин и супертанкеров, масса которых составляет сотни и тысячи тонн.

Машиностроение отличается от других отраслей промышленности рядом особенностей, которые имеют влияние на географию его размещения. Важным является наличие общественной потребности в продукции, квалифицированных трудовых ресурсов, собственного производства или возможности поставки конструкционных материалов и энергомощностей. Таким образом, научно-технический прогресс материализуется через продукцию машиностроения, следовательно, экономическим назначением продукции машиностроения является облегчение труда и повышение производительности. Конструктивно-технологическая сложность продукции машиностроения требует квалифицированной и разнообразной по профессиям рабочей силы. В настоящее время машиностроение состоит из ряда самостоятельных отраслей (станкостроение, приборостроение, самолето - вертолетостроение, кузнечно-штамповочное производство, электроника и т.д.). Машиностроительный комплекс СССР насчитывал тысячи крупных и десятки тысяч средних предприятий с численностью работающих более 42 миллионов человек.

С переходом к «рыночной экономике» в стране произошло резкое падение объемов производства и существенно снизился научно-технический уровень и потенциал продукции машиностроения, что продиктовано политической и экономической переориентацией новых собственников предприятий на новые способы извлечения прибыли в соответствии с продиктованными внешнеэкономическими ограничениями.

В соответствии с «новой экономической политикой» и в зависимости от того, на какой рынок ориентирована продукция, выпускаемая современными предприятиями, их условно классифицируют на следующие группы (по материалам совещания в Минпромнауки РФ, 28 февраля 2003 г.):

1. Группа отраслей инвестиционного машиностроения (тяжелое, энергетическое, транспортное, химическое, нефтяное, строительно-дорожное машиностроение), развитие которых определяется инвестиционной активностью топливно-энергетического комплекса.

2. Группа предприятий тракторного и сельскохозяйственного машиностроения, машиностроения для перерабатывающих отраслей агропромышленного комплекса и предприятий легкой промышленности, зависящих от платежеспособности 5 сельхозпроизводителей и переработчиков сельскохозяйственной продукции, а также частично от спроса населения.

3. Электроника, приборостроение, станкостроение - группа наукоемких отраслей, так называемых комплектующих, развивающихся вслед за потребностями всех иных отраслей промышленности, включая и само машиностроение.

4. Автомобильная промышленность, выпуск продукции которой ориентирован на спрос конечных потребителей, а также на нужды предприятий и фирм.

С точки зрения трудоемкости машиностроительный комплекс характеризуется большими затратами и очень высокой квалификацией труда. К чрезвычайно трудоемким можно отнести следующие направления машиностроительной промышленности: авиационную, станкостроение и станкоинструментальную, электронику и область точных приборов, ракето-космическую, автомобилестроительную и судостроение.

По металло-, трудо- и энергоемкости принято выделять тяжелое, общее, среднее машиностроение и приборостроение. Отрасли тяжелого машиностроения отличаются большим потреблением металла и обеспечивают машинами и оборудованием предприятия металлургического, топливно-энергетического, горнодобывающего комплексов, подъемно-транспортного, атомного и полиграфического машиностроения, а также котлостроение и турбостроение.

Общее машиностроение характеризуется средними нормами потребления металла, энергии и имеет невысокую трудоемкость. Это транспортное (без автостроения) производство, производство технологического оборудования и строительства, сельскохозяйственное машиностроение (без тракторостроения).

Среднее машиностроение - производство машин, тракторов, станков. Наименьшая металлоемкость, наибольшая трудоемкость и потребность в высококвалифицированных кадрах характерна для приборостроения. Это группа отраслей по производству точных машин, механизмов, приборов, инструментов.

Современная структура машиностроительных предприятий есть результат исторических условий формирования отдельных предприятий и всей машиностроительной промышленности в целом. История развития машиностроения своими корнями уходит в далекое прошлое.

1. История и логика взаимосвязи науки и техники

По вопросу взаимоотношения науки и техники можно выделить две основные позиции, первая из них определяет роль науки, согласно этой точке зрения, наука - это производная знания, а техника ее применение, овеществление. В соответствии со второй точкой зрения ведущая роль в данном соотношении (дихотомии) закрепляется за техникой, под влиянием которой развивается наука.

На разных этапах развития общества наука и техника взаимодействуют не одинаково. В начальном периоде развития материалообработки преобладали простые орудия труда. В этих условиях конечный результат зависит от опыта и умения мастера. До XУIII века техника и технология производится техника не испытывала на себе существенного влияния науки.

«Первые трудосберегающие машины: ткацкий станок, силовые двигатели, транспортные средства, способы разливки стали и многое другое - писал М. Виноградов - являлись результатом деятельности ремесленников мануфактурных рабочих, знание передается в форме рецептов, причем не обосновывались, эти знания доставались от предков, которые получали их от богов».

Техническая наука возникает, как попытка понять действие технических устройств созданных изобретателем. Известно, что часовщик Джеймс Уатт изобрел паровую машину, цирюльник Ричард Аркрайт изобрёл прядильную машину «Waterframe», ювелир Роберт Фултон изобретатель, создатель одного из первых пароходов и проекта одной из первых подводных лодок; то есть первоначально техническая наука исследует природные законы, на основе которых работает техника.

К концу XIX века ситуация в корне меняется. Целые отрасли промышленности создаются на основе развития науки: электротехническая, химическая, различные отрасли машиностроения и т.д.

2. Место дисциплины «Технологии машиностроения» в классификации современных наук

Классификации современных наук проводятся по самым различным основаниям (критериям). По предмету и методу познания можно выделить науки о природе -- естествознание, об обществе -- обществознание (гуманитарные, социальные науки) и о самом познании, мышлении (логика, гносеология, эпистемология и др.). Отдельную группу составляют технические науки.

В свою очередь каждая группа наук может быть подвергнута более подробному членению. Так, в состав естественных наук входят механика, физика, химия, геология, биология и др., каждая из которых подразделяется на целый ряд отдельных научных дисциплин.

Дисциплина «Технология машиностроения» по предмету и методу познания относится к группе технических наук. Технические науки -- область знания, в которой описываются и изучаются закономерности “второй природы”, т. е. технического мира. Знания технических наук оцениваются с точки зрения не только истинности, но и эффективности, поскольку создаются специально для использования в технике и инженерной деятельности.

В отличие от технических наук классического типа, возникших, как правило, на базе одной естественной науки (напр., электротехника формируется на базе теории электричества), технические науки неклассического типа, то есть комплексные. Технология машиностроения складываются на базе нескольких естественных наук, они состоят из разнородных предметных и теоретических частей, используют системные и блок-схемные модели разрабатываемых объектов, включают описание средств и языков, используемых в исследовании, проектировании и инженерных разработках. Комплексные технические науки отличаются и по объектам исследования. Помимо обычных технических и инженерных устройств они изучают и описывают еще, по меньшей мере, три типа объектов: системы человек--машина (компьютеры, пульты управления, полуавтоматы и т. д.), сложные техносистемы (напр., инженерные сооружения в городе, самолеты и технические системы их обслуживания -- аэродромы, дороги, обслуживающая техника и т. д.) и, наконец, такие объекты, как технология или техносфера в целом.

3. Формирование знания о технической науке

Начиная с 18 в. складывается промышленное производство и формируется потребность в тиражировании и модификации изобретенных инженерных устройств (парового котла и прядильных машин, станков, двигателей для пароходов и паровозов и т. д.). В силу того, что проектировщик все чаще имеет дело не только с разработкой принципиально нового инженерного объекта (т. е. изобретением), но и с созданием сходного (модифицированного) изделия (напр., машины того же класса, но с другими характеристиками -- иная мощность, скорость, габариты, вес, конструкция и т. д.), резко возрастает объем расчетов и конструирования. Другими словами, инженер теперь занят не только созданием нового инженерного объекта, но и разработкой целого класса таких объектов, сходных (однородных) с изобретенным. Это позволяло сводить одни случаи и одни группы знаний к другим. В результате начинают выделяться определенные группы естественно-научных знаний и схем инженерных объектов. Фактически это были первые знания и объекты технических наук, но существующие пока еще не в собственной форме. На этот процесс накладывались два других -- онтологизация и математизация.

Онтологизация представляет собой поэтапный процесс схематизации инженерных устройств, в ходе которого эти устройства расчленялись на отдельные части и каждая замещалась “идеализированным представлением” (схемой, моделью). Подобные идеализированные представления вводились для того, чтобы к инженерному объекту можно было применить как математические, так и естественно-научные знания. Математизация (замещение инженерного объекта математическими моделями) была не только необходимым условием изобретения, конструирования и расчета, но и стадией построения нужных для этих процедур идеальных объектов естественной науки.

Накидываясь друг на друга, эти три процесса (сведение, онтологизация и математизация) и приводят к формированию первых идеальных объектов и теоретических знаний собственно технических наук. С первых шагов формирования технических наук на них был распространен идеал организации фундаментальной науки: знания об отношениях трактовались как законы или теоремы, а процедуры их получения -- как доказательства. Другой фактор, повлиявший на формирование технических наук, -- стремление упростить способы и процедуры установления и анализа отношений между параметрами инженерного объекта. Напр., в некоторых случаях громоздкие процедуры преобразования и сведения существенно упрощаются после того, как исходный объект замещается сначала с помощью уравнений математического анализа, затем в теории графов, так что преобразования осуществляются в каждом из этих замещающих слоев. Существенно изменяются и параметры процесса математизации. Если на первой стадии используются лишь отдельные фрагменты математических теорий, то в дальнейшем в технических науках переходят к применению целых комплексов математических средств. Это позволяет: а) решать задачи не только анализа, но и синтеза технических устройств, б) исследовать такие теоретически возможные случаи, которые охватывают всю изучаемую область инженерных объектов; в) выйти к теориям идеальных инженерных устройств (напр., теории идеальной паровой машины, теории механизмов, теории радиотехнического устройства и т. д.).

Идеальное устройство -- это конструкция, которую исследователь создает из элементов и отношений идеальных объектов технических наук; она является моделью инженерных объектов определенного класса, имитируя основные процессы и конструктивные особенности этих инженерных устройств. В технических науках появляются не только самостоятельные идеальные объекты, но и самостоятельные объекты квазиприродного характера. Построение подобных конструкций-моделей существенно облегчает инженерную деятельность, поскольку, изучая их, инженер-исследователь может теперь анализировать основные процессы и условия, определяющие работу создаваемого им инженерного объекта.

В формировании неклассических технических наук в свою очередь можно выделить несколько этапов. На первом этапе складывается область однородных, достаточно сложных инженерных объектов (систем). Проектирование, разработка, расчеты этих объектов приводят к применению (и параллельно, если нужно, к разработке) нескольких технических теорий классического типа. При этом задача заключается не только в том, чтобы описать и конструктивно определить различные процессы, аспекты и режимы работы проектируемой (и исследуемой) системы, но и “собрать” все отдельные представления в единой многоаспектной модели.

На втором этапе в разных подсистемах и процессах сложного инженерного объекта выявляются сходные планы и процессы (регулирование, передача информации, функционирование систем определенного класса и т. д.), которые позволяют, во-первых, решать задачи нового класса, характерные для таких инженерных объектов (напр., установление принципов надежности, управления, синтеза разнородных подсистем и т. д.), во-вторых, использовать для описания и проектирования таких объектов определенные математические средства (математическую статистику, теорию множеств, теорию графов и т. п.). Т. о., создание технических теорий неклассического типа предполагает предварительное использование технических наук классического типа, а также синтез их на основе системных, кибернетических, информационных и т. п. представлений.

На третьем этапе в рамках технических наук неклассического типа создаются теории идеальных инженерных устройств (систем). Создание теории идеальных инженерных устройств завершает формирование и классических, и неклассических технических наук. Идеальные инженерные устройства живут и функционируют не только по законам первой природы, но и по “законам” второй природы, в которой рождаются и живут инженерные объекты.

4. История развития «технологии машиностроения»

Человеческое общество не может существовать без постоянного производства продукции самого разнообразного назначения. В свою очередь производство уже нельзя представить без применения машин. Их изготовление - особая область человеческой деятельности, основанная на использовании закономерностей технологии машиностроения.

Технология машиностроительного производства представляет собой совокупность различных технологических процессов (ТП) - литья, ковки, штамповки, термической обработки, окраски и др. Технология же машиностроения охватывает заключительные стадии машиностроительного производства - превращения заготовок в готовые детали и сборку, т.е. изготовление машин.

Развитие машиностроения потребовало выделения в самостоятельную дисциплину специальности «Технология машиностроения».

Главным средством интенсификации производства любого назначения является парк машин, которым располагает государство. Прогресс в развитии общества предопределяется техническим уровнем применяемых машин. Их создание, т.е. конструирование и изготовление, составляет основу машиностроения. Общепризнанно, что именно машиностроение является главной отраслью народного хозяйства, которая определяет возможность развития других отраслей.

Применение машин резко увеличивает производительность труда, повышает качество продукции, делает труд безопасным и привлекательным. Это особенно важно для развивающихся государств, поскольку именно машиностроительное производство способствует резкому повышению благосостояния общества. В конкурентной борьбе отдельных государств и фирм неизменно побеждает тот, кто имеет более совершенные машины.

Машиностроение обеспечивает изготовление новых и совершенствование имеющихся машин. Это связано с весьма существенными затратами, которые составляют в народном хозяйстве ощутимую долю. Тем не менее, развитие отечественного машиностроения, а не импорт машин, является единственно правильным направлением в прогрессивном развитии промышленности.

Отличительной особенностью современного машиностроения является существенное ужесточение эксплуатационных характеристик машин: увеличиваются скорость, ускорение, температура, уменьшаются масса, объем, вибрация, время срабатывания механизмов и т.п. Темпы такого ужесточения постоянно возрастают, и машиностроители вынуждены все быстрее решать конструкторские и технологические задачи. В условиях рыночных отношений быстрота реализации принятых решений играет главенствующую роль.

Конструирование и изготовление машин представляет собой два этапа единого процесса. Эти этапы неразрывно связаны между собой. Уже нельзя себе представить конструирование без учета технологичности конструкции. Технологичная конструкция позволяет экономить затраты труда, повышать точность, использовать высокопроизводительное оборудование, оснастку и инструменты, экономить энергию. Чем более технологичной оказывается конструкция, тем совершеннее и дешевле будет ее производство, в ходе подготовки которого не требуется проводить корректировок чертежей и доделок.

На этапе изготовления машин особое внимание обращают на их качество и его важнейший показатель - точность. В прошлом столетии точность деталей машин выросла почти в 2000 раз. Такого увеличения не наблюдается ни по одному из показателей служебных характеристик. В ряде производств уже становится нормой изготовление деталей с микрометрической точностью. Понятие «точность» относится не только к размеру, но и к форме, взаимному расположению поверхностей, физико-механическим характеристикам деталей и среды, в которой их изготавливают.

Создание машин заданного качества в производственных условиях опирается на научные основы технологии машиностроения. Процесс качественного изготовления машины (выбор заготовок, их обработка и сборка деталей) сопровождается использованием закономерностей технологии машиностроения.

Важнейшим показателем качества является точность всех параметров изготовления детали. Сложность решения проблемы точности состоит в необходимости учета одновременного действия многих факторов, каждый из которых вызывает определенную первичную погрешность изготовления детали.

Например, свою долю в погрешности детали вносят неточности оборудования, но одновременно с этим на точность детали влияют погрешность настройки режущего инструмента, его износ. Процесс формирования погрешностей сопровождается температурными деформациями технологической системы и зависит от ее динамических качеств. Изменение сил, действующих на систему в ходе обработки заготовок, неизменно приводит к возникновению упругих деформаций, значения которых постоянно изменяются. Задача технолога состоит в определении числового значения с доведением до числа каждой первичной погрешности и в умении правильного учета - суммирования значений этих погрешностей. Опираясь на закономерности основ технологии машиностроения, можно определить ожидаемую точность обработки и сравнить ее с допуском на размер, форму, расположение поверхностей и др. Становится возможным оценить качество технологического процесса (ТП) уже в ходе его разработки.

ТП всегда многовариантен. Делая анализ первичных погрешностей, учитывая их взаимодействия и комбинирования, можно выбрать оптимальный вариант, отвечающий основному назначению технологии машиностроения как науки. Технология машиностроения позволяет решать проблемы изготовления машин в соответствии с заданной программой их объема выпуска, обеспечивая установленные показатели качества при оптимальных затратах живого и овеществленного труда. Проблемы производства тесно увязаны с его экономикой.

Многовариантность разработки ТП всегда связана с преодолением существенных трудностей. Каждый разработчик процесса, анализируя многие факторы, приходит в итоге к определенному технологическому решению (ТР). Однако нельзя гарантировать, что именно принятое решение является наиболее приемлемым, поскольку задача разработки процесса с самого начала содержала много неизвестных факторов, а в ряде случаев использовались гипотезы и предположения частного характера. Кроме того, в настоящее время для решения многовариантных задач с успехом применяют электронно-вычислительные машины (ЭВМ). При этом удается не только учесть многие одновременно действующие факторы, но и выработать единое решение за короткое время. Разработчик ТП должен владеть основами теории принятия ТР, знать ее основные правила и закономерности. Применение последних осуществляется при разработке конкретных ТП.

Использование ЭВМ при разработке ТП знаменует новый этап развития технологии машиностроения как науки. Оптимальные решения формируются за короткое время и при сравнительно малых затратах средств. Конкретный ТП изготовления детали и сборки может быть представлен на уровне, как технологического маршрута, так и технологической операции. При этом оформляют соответствующую документацию с графическим подтверждением принятых решений.

Несмотря на очевидную прогрессивность использования ЭВМ, нельзя считать, что разработка ТП связана исключительно с их применением. Разработчик должен владеть различными методами решений технологических задач, как с применением ЭВМ, так и без них.

Основы технологии машиностроения традиционно включают несколько важнейших этапов разработки ТП. В любом типе производства оказывается необходимым анализ исходных данных и технологический контроль конструкторской документации. Экономические проблемы современного производства одной из основных делают задачу выбора заготовок и разработку маршрутного ТП. Выполнение этих этапов убедительно указывает на центральное место технологии машиностроения в машиностроительном производстве. Маршрутный и операционный ТП определяют особенности смежных производств (в частности, заготовительного), выбор оборудования и размещение заказов на создание нового оборудования, режущего инструмента, приспособлений; измерительных средств и всех элементов производства, которые образуют производственную среду. Конструкции производственных зданий, площади и особенности проектирования цехов и отдельных участков также полностью подчиняются разработанному ТП.

Основные типы производства - массовое, серийное и единичное - имеют свои технологические особенности. Наиболее распространенным является серийный тип производства, в составе которого развивается ряд прогрессивных ТП. Групповой ТП и преимущества использования металлорежущих станков с числовым программным управлением (ЧПУ) позволяют реализовать прогрессивность процесса в наибольшей степени. Обработка заготовок на агрегатных станках и автоматических линиях характерна для массового производства. Но и эти процессы являются прогрессивными. Единичное производство характеризуется малым объемом годового выпуска изделий, но может быть прогрессивным при выпуске как тяжелых, уникальных изделий, так и небольших по массе высокоточных машин.

С использованием ЭВМ и положений теории принятия решений становится возможным решать проблему автоматизации разработки ТП. Такая работа требует особых знаний, которые составляют один из важнейших этапов основ технологии машиностроения.

Целая серия научных положений технологии машиностроения охватывает и заключительную стадию производства - сборку. Тем не менее эта стадия имеет свои отличительные особенности. Свойства собираемых деталей, их характеристики, допуски размера, формы и расположения поверхностей по определенным законам взаимодействуют в собранной машине, определяя ее качество. Основы технологии машиностроения включают разработку ТП сборки и их автоматизацию. Главным же моментом является установление связей двух стадий - изготовления деталей и их сборки.

Технология машиностроения - это наука об изготовлении машин требуемого качества в установленном производственной программой количестве и в заданные сроки при наименьших затратах живого и овеществленного труда, т. е. при наименьшей себестоимости.

4.1 Этапы развития «Технологии машиностроения»

Технология машиностроения как наука прошла в своем развитии несколько этапов.

Первый этап, совпадающий с завершением периода восстановления и началом реконструкции промышленности страны (до 1929-1930), характеризуется накоплением отечественного и зарубежного производственного опыта изготовления машин. В отечественных технических журналах, каталогах и брошюрах публикуются описания процессов обработки различных деталей, применяемого оборудования и инструментов. Издаются первые руководящие и нормативные материалы ведомственных проектных организаций страны.

Второй этап относится к периоду первых пятилеток до начала отечественной войны (1930-1941) и определяется продолжением накопления производственного опыта с проведением его обобщения и систематизации и началом разработки общих научных принципов построения технологических процессов.

К этому времени следует отнести начало формирования технологии машиностроения как науки в связи с опубликованием в 1933-1935 гг. первых систематизированных научных трудов советских профессоров: А.П. Соколовского, А.И. Каширина, В.М. Кована и А.Б. Яхина.

На этом этапе разрабатываются принципы типизации технологических процессов (проф. А.П. Соколовский, канд. техн. наук М.С. Красильщиков, проф. Ф.С. Демьянюк и др.) и осуществляется их практическое внедрение; начинается разработка теории базирования заготовок при их обработке, измерении и сборке (профессора А.П. Соколовский, А.П. Знаменский, А.И. Каширин, В.М. Кован, А.Б. Яхин и др.); создаются методы расчета припусков на обработку (профессора В.М. Кован, А.П. Соколовский, Б.С. Балакшин, А.И. Каширин и др.); начинаются работы по изучению жесткости технологической системы (инж. К.В. Вотинов, проф. А.П. Соколовский). В то же время начинается разработка расчетно-аналитического метода определения первичных погрешностей обработки заготовок (профессора А.П. Соколовский, Б.С. Балакшин, В.С. Корсаков, А.Б. Яхин и др.) и методов исследования точности обработки на станках с применением методов математической статистики и теории вероятностей (профессора А.А. Зыков, А.Б. Яхин).

Очень большое значение для повышения общего технического уровня промышленных предприятий и развития технологии машиностроения, создания систематизированной и упорядоченной технологической документации и повышения качества выпускаемой продукции имели опубликованные в этот период Указ Президиума Верховного Совета СССР от 10 июля 1940 г. об ответственности за выпуск недоброкачественной продукции и за несоблюдение обязательных стандартов промышленными предприятиями и Постановление Совета Народных Комиссаров СССР от 8 декабря 1940 г. «О соблюдении технологической дисциплины на машиностроительных заводах». Наличие хорошо отработанной технологической документации и высокая технологическая дисциплина на машиностроительных предприятиях сыграли решающую роль для быстрого развертывания работы заводов, эвакуированных на Восток, и бесперебойного снабжения фронта военной техникой с первых дней войны.

Третий этап, охватывающий годы войны и послевоенного развития (1941-1970), отличается исключительно интенсивным развитием технологии машиностроения, разработкой новых технологических идей и формированием научных основ технологической науки. Практическая проверка принципов дифференциации и концентрации операций, методов поточного производства в условиях серийного и крупносерийного изготовления военной техники, новые методы скоростной обработки металлов, применение переналаживаемой технологической оснастки и целый ряд других технических новинок, осуществленных в военные годы, были подвергнуты в этот период глубокому научному анализу и теоретической разработке.

В эти годы формируется современная теория точности обработки заготовок и подробно разрабатывается расчетно-аналитический метод определения первичных погрешностей обработки и их суммирования (профессора А.П. Соколовский, Б.С. Балакшин, В.М. Кован, В.С. Корсаков, А.Б. Яхин и др.); развиваются и широко используются методы математической статистики и теории вероятностей для анализа точности процессов механической обработки и сборки, работы оборудования и инструмента (профессора Н.А. Бородачева, А.Б. Яхин и др.), анализа микрорельефа обработанной поверхности и абразивного инструмента (профессора И.В. Дунин-Барковский, Ю.В. Линник и др.). Детально разрабатывается учение о жесткости технологической системы и ее влиянии на точность и производительность обработки (профессора Б.С. Балакшин, А.П. Соколовский, В.А. Скраган и др.), и широко внедряются методы расчетов жесткости в конструкторские и технологические расчеты во многих проектных организациях и НИИ. Продолжается разработка теории базирования обрабатываемых заготовок и собираемых узлов (профессора Б.С. Балакшин, А.И. Каширин, В.М. Кован, И.С. Корсаков, И.М. Колесов, А.А. Маталин, А.П. Соколовский и др.) и расчета припусков на обработку (профессора В. М. Кован, А. П. Соколовский и др.). Широко развертываются теоретические и экспериментальные исследования качества обработанной поверхности (шероховатости, наклепа, остаточных напряжений) и их влияния на важнейшие эксплуатационные свойства деталей машин (профессора П.Е. Дьяченко, Б.Д. Грозин, А.И. Исаев, А.И. Каширин, Б.И. Костецкий, Б.А. Кравченко, И.В. Крагельский, И.В. Кудрявцев, А.А. Маталин, Д.Д. Папшев, А.В. Подзей, Ю.Г. Проскуряков, Э.В. Рыжов, Э.А. Сатель, А.М. Сулима, Ю.Г. Шнейдер, М.О. Якобсон и др.). Формируется новое научное направление - учение о технологической наследственности (профессора А.М. Дальский, А.А. Маталин, П.И. Ящерицын). Развертываются работы по изучению влияния динамики технологической системы на точность механической обработки, шероховатость и волнистость обработанных поверхностей (профессора И.С. Амосов, А.И. Каширин, В.А. Кудинов, А.П. Соколовский).

В этот период начинается разработка проблемы организации поточных и автоматизированных технологических процессов обработки заготовок в серийном производстве. Профессором С. П. Митрофановым разрабатывается и внедряется в производство групповой метод технологии и организации производства. На базе типизации технологических процессов и использования переналаживаемого оборудования и технологической оснастки создаются поточные линии серийного производства (профессора В.В. Бойцов, Ф.С. Демьянюк); подробно разрабатывается построение структур технологических операций (профессора В.М. Кован, В.С. Корсаков, Д.В. Чарнко). Под руководством проф. Б.С. Балакшина в Мосстанкине создаются системы адаптивного управления технологическими процессами обработки на металлорежущих станках (профессора Б.С. Балакшин, Б.М. Базров, Ю.М. Соломенцев, И.М. Колесов, С.П. Протопопов, М.М. Тверской, В.А. Тимирязев, Е.И. Луцков, В.А. Медведев, Л.В. Худобин и др.).

Систематизируются и обобщаются материалы по технологии сборки, и разрабатываются ее научные основы (профессора В.С. Корсаков, М.П. Новиков). Продолжается накопление производственного опыта производства машин и совершенствуются различные методы обработки заготовок. Находят широкое применение методы объемной и чистовой обработки пластическим деформированием, электрофизическое и электрохимической обработки.

Четвертый этап - с 1970 г. по настоящее время. Отличительной особенностью современного этапа развития технологии машиностроения является широкое использование достижений фундаментальных и общеинженерных наук для решения теоретических проблем и практических задач технологии машиностроения. Различные разделы математических наук, теоретической механики, физики, химии, теории пластичности, материаловедения, кристаллографии и многих других наук принимаются в качестве теоретической основы новых направлений технологии машиностроения или используются в качестве аппарата для решения практических технологических вопросов, существенно повышая общий теоретический уровень технологии машиностроения и ее практические возможности. Распространяются применение вычислительной техники при проектировании технологических процессов и математическое моделирование процессов механической обработки. Осуществляется автоматизация программирования процессов обработки на широко распространяющихся станках с ЧПУ. Создаются системы автоматизированного проектирования технологических процессов - САПР ТП (профессора Г.К. Горанский, Н.М. Капустин, С.П. Митрофанов, В.Д. Цветков).

4.2 Особенности дисциплины «Технология машиностроения»

Технология машиностроения как учебная дисциплина имеет ряд особенностей, существенно отличающих ее от других специальных наук, изучаемых в вузах.

1. Технология машиностроения является прикладной наукой, вызванной к жизни потребностями развивающейся промышленности. Как писал один из ее основателей проф. А.П. Соколовский, учение о технологии родилось в цехе и не должно порывать с ним связи. И противном случае работа технолога станет академической и бесплодной.

2. Являясь прикладной наукой, технология машиностроения вместе с тем имеет значительную теоретическую основу, включающую в себя: учение о типизации технологических процессов и групповой обработке, о жесткости технологической системы, о точности процессов обработки, рассеянии размеров обрабатываемых заготовок, погрешностях технологической оснастки и оборудования, о влиянии механической обработки на состояние металла поверхностных слоев заготовок и эксплуатационные свойства деталей машин, о припусках на обработку, о путях повышения производительности и экономичности технологических процессов, а также теорию конструкторских и технологических баз и другие теоретические разделы.

3. Технология машиностроения является комплексной инженерной и научной дисциплиной, тесно связанной и широко использующей разработки многих учебных дисциплин, изучаемых в технических вузах. Само определение технологии машиностроения как науки об изготовлении машин трактует ее как синтез технических проблем («изготовление машин требуемого качества»), организации производства («в установленном производственной программой количестве»), планирования («в заданные сроки») и экономики машиностроения («при наименьшей себестоимости»).

Некоторые важные разделы этих наук стали органической частью технологии машиностроения. Так, например, определение трудоемкости обработки и техническое нормирование сейчас являются разделом общего курса технологии машиностроения. Сопоставление экономичности технологических вариантов и расчеты себестоимости обработки и технологической оснастки являются обязательной частью проектирования технологических процессов. Исходя из требований организации и планирования поточной обработки и синхронизации отдельных операций соответственно установленному такту, определяются структура технологических операций и все построение поточной или автоматической линии.

Важнейшие современные направления развития технологии машиностроения по оптимизации режимов и процессов обработки, автоматизации серийного производства и управления технологическими процессами, применению технологических методов повышения эксплуатационных качеств изготовляемых изделий и других в значительной мере основываются на достижениях математических наук, электронной вычислительной и управляющей техники, кибернетики, робототехники, металлофизики и других современных теоретических и технических наук.

Технология машиностроения является одной из самых молодых наук, быстро развивающейся вместе с возникновением новой техники и совершенствованием промышленного производства. Ее содержание непрерывно уточняется и обогащается новыми сведениями и теоретическими разработками.

Технология машиностроения как наука возникла в Советском Союзе и развивается трудами Российских ученых, производственников и новаторов производства.

Как учебная дисциплина высшей школы технология машиностроения ограничивается рассмотрением вопросов механосборочного производства.

Технология машиностроения является основной профилирующей дисциплиной специальности «Технология машиностроения, металлорежущие станки и инструменты», в значительной мере определяющей уровень профессиональной подготовки инженеров этой специальности и их способности к практическому использованию достижений общетеоретических и общеинженерных наук.

5. Предметная область «технологии машиностроения»

наука машиностроение инженерный технический

Современный человек стремится выполнять преобразования предметов природы с помощью машин.

Человеческое общество постоянно испытывает потребности в новых видах продукции либо в сокращении затрат труда при изготовлении освоенной продукции. Эти потребности могут быть удовлетворены с помощью новых технологических процессов и новых машин. Таким образом, стимулом к созданию новой машины всегда является новый технологический процесс.

Машина полезна лишь тогда, когда обладает требуемым качеством и, таким образом, способна удовлетворять потребность людей.

Ресурсы труда в жизни человеческого общества представляют собой наивысшую ценность.

Создавая машину, человек ставит перед собой две задачи:

Создать машину качественной.

При создании машины затратить меньшее количество труда.

Замысел новой машины возникает при разработке технологического процесса изготовления продукции, в производстве которой возникла потребность. Этот замысел выражается в формулировке служебного назначения, которая является исходным документом для проектируемой машины.

Процесс создания машины состоит из двух этапов: проектирования и изготовления.

В результате проектирования появляются чертежи машины. В результате изготовления с помощью производственного процесса появляется машина.

Второй этап и составляет основную задачу технологии машиностроения. Создание машины можно представить в виде схемы (рис. 1). Изготовление машины связано с использованием различных способов обработки металлов.

Размещено на http://www.allbest.ru/

Рис. 1. Создание машины

Зарождение технологии машиностроения как отрасли науки связывают с появлением трудов, содержащих описание опыта производства процесса.

Впервые сформулировал положение о технологии и определил, что «технология - наука о ремеслах и заводах», в 1804 г. академик В.М. Севергин. А в 1817 г. впервые был изложен опыт производства профессором Московского университета И.А. Двигубским в книге «Начальные основания технологии, или краткое описание работ, на заводах и фабриках производимых».

Дальнейшее описание выполнено И.А. Тиме (1838-1920) в первом капитальном труде «Основы машиностроения. Организация машиностроительных фабрик в техническом и экономическом отношении и производство в них работ», вышедшим в 1885 г. Позже А.П. Гавриленко (1861-1914) создал курс «Технология металлов».

Машиной называют устройство, выполняющее механические движения для преобразования энергии, материалов и информации с целью замены или облегчения физического и умственного труда человека. Под материалами понимают обрабатываемые предметы, перемещаемые грузы и т.п. В соответствии со сказанным машины разделяют на энергетические (электрические двигатели, двигатели внутреннего сгорания, турбины и т.д.), рабочие (транспортные и технологические машины: автомобили, самолеты, тракторы, транспортеры, прокатные станы и т.д.) и информационные (измерительные, контрольно-управляющие и т.д.).

Каждая машина предназначена для выполнения определенных функций в определенном (заданном) диапазоне изменения условий ее эксплуатации.

Поэтому машина - система, созданная трудом человека, для качественного преобразования исходного продукта в полезную для человека продукцию (рис. 2).

Исходный продукт процесса - предметы природы, сырье или полуфабрикат.

Сырье - предмет труда, на добычу или производство которого был затрачен труд.

Полуфабрикат - сырье, которое подвергалось обработке, но не может быть потреблено как готовый продукт.

Размещено на http://www.allbest.ru/

Продукция - это результат производства в виде сырья, полуфабриката, созданных материальных и культурных благ или выполненных работ производственного характера (табл. 1).

Каждая машина создается для выполнения определенного процесса, т.е. имеет свое, строго определенное предназначение, иными словами - свое служебное назначение.

Под служебным назначением машины понимают четко сформулированную задачу, для решения которой предназначена машина.

Формулировка служебного назначения машины должна содержать подробные сведения, конкретизирующие общую задачу и уточняющие условия, при которых эта задача может быть решена. Например, автомобиль или обувь (табл. 2).

Таблица 1

Сведения для формулировки служебного назначения изделий

Служебное назначение машины описывают не только словесно, но и системой количественных показателей, определяющих ее конкретные функции, условия работы и т.д. Формулировка служебного назначения машины является важнейшим документом в задании на ее проектирование.

Совокупность свойств, обусловливающих пригодность машины выполнять указанные функции в заданном диапазоне изменения условий эксплуатации, называют качеством машины. Качество машины принято характеризовать системой показателей, устанавливаемых действующими стандартами.

К наиболее важным относят эксплуатационные показатели: технический уровень машины, ее надежность, эргономическую и эстетическую характеристики. Технический уровень (мощность, КПД, производительность, точность работы, степень автоматизации, экономичность и др.) определяет степень совершенства машины. Надежность является комплексным свойством, которое включает безотказность, долговечность, ремонтопригодность и сохраняемость. Под надежностью понимают свойство машины сохранять исправное и работоспособное состояние в течение определенного промежутка времени.

Качество машины, проявляющееся при ее эксплуатации, формируется практически на всех этапах ее «жизненного» цикла.

Конструкция любой машины - сложная система двух видов сопряженных множеств связей:

Свойств материалов.

Размерных.

Для реализации такой системы связей должен быть создан и осуществлен производственный процесс, который представляет собой другую систему сопряженных множеств связей:

свойств материалов (нужны для создания аналогичных связей в машине во время производственного процесса);

размерных;

информационных (для управления производственным процессом);

временных и экономических (производственный процесс не может осуществляться вне времени и без затрат живого и овеществленного труда).

Таким образом, создание машины сведены к построению двух систем связей: конструкции машины и производственного процесса изготовления.

На стадии конструкторской разработки качество будущей машины определяется, во-первых, выбором рациональных схем, эффективных рабочих процессов, использованием современных методов расчетов динамики и прочности машин, выбором материалов (этапы научно-исследовательских и опытно-конструкторских работ) и, во-вторых, применением подтвержденных испытаниями оригинальных конструкторских, а также стандартных и унифицированных решений, расчетом размерных цепей (этапы проектирования и конструирования).

Конструкторская разработка заканчивается выпуском конструкторской документации, включающей чертежи элементов и машины в целом, а также технические условия на изготовление этих элементов и машины в целом. В конструкторской документации сформулированы требования к отдельным показателям качества, которые в совокупности призваны обеспечить требуемое качество машины.

Совокупность показателей, отражаемых в конструкторской документации, подразделяют на показатели геометрического характера, устанавливающие требования к точности размеров, форм и взаимного расположения для элементов машины, и показатели физико-механических свойств материалов элементов машины.

Требования к качеству машины, сформированные при конструкторской разработке, должны быть обеспечены при ее производстве.

Заключение. ПОЛИТИКА РАЗВИТИЯ МАШИНОСТРОЕНИЯ

Машиностроительный комплекс играет важную роль в экономике, обеспечивая своей продукцией нужды материального производства, непроизводительной сферы, обороны и населения. От него зависит технологический прогресс в обществе, уровень производственного аппарата и качество жизни людей. На современном историческом этапе важно возродить спрос на оборудование в базовых, жизнеобеспечивающих отраслях народного хозяйства. Для технологической сбалансированности машиностроительного комплекса, придания необходимой гибкости его производственной базе требуется увеличение выпуска оборудования межотраслевого назначения. В отраслях машиностроения целесообразно ограничить закупки зарубежной техники, аналоги которой выпускаются или могут выпускаться в России. Это позволит повысить загрузку производственных мощностей, восстановить производственно-кооперационные связи со странами ближнего зарубежья. Вместе с тем необходима государственная поддержка тех подотраслей машиностроительного комплекса (в первую очередь оборонных), чьи производственные мощности позволяют провести техническое перевооружение производственного аппарата страны.

Стратегия развития машиностроения предусматривает внедрение новейших технологий с возможностью замены оборудования, постепенное накопление опыта его производства, а затем развитие приоритетных технологий.

При благоприятных рыночных условиях российское машиностроение будет развиваться в следующих направлениях:

* выпуск модернизированных машин и оборудования для предприятий с морально устаревшим, но еще функционирующим оборудованием;

* производство наукоемкой продукции на импортном оборудовании с привлечением иностранного капитала;

* участие в проектах, предполагающих производство технологически сложных комплектующих изделий для техники, выпускаемой иностранными фирмами за рубежом (включение российских технологий в международную систему технологического сотрудничества);

* точечное развитие отдельных производств по выпуску оборудования для высоких технологий, как на импортной, так и на собственной технологической базе.

Весьма значительным остается потенциал российского экспорта оружия и военной техники. Реализация отечественных научно-технических проектов организации производства наукоемкой машиностроительной продукции может способствовать значительному увеличению экспорта, доходы от которого могут служить весовым источником инвестиций в отрасль.

В ближайшей перспективе конкурентная среда рынка будет управлять такими тенденциями, как продажи самолетов и вертолетов прежних поколений и их модификаций странам третьего мира, разработка новых проектов в результате совместных усилий нескольких фирм из нескольких стран для снижения риска; авиационная промышленность обеспечит большую часть экспорта оборонных отраслей промышленности, как по линии гражданской продукции, так и по линии авиационных вооружений и военной техники. Авиационная промышленность России способна и должна стать точкой роста возрождения нашей экономики.

Важным является переход машиностроения на более высокую ступень автоматизации производства на базе использования роботизированных производств. Расширение потребностей различных отраслей народного хозяйства и комплексов взаимосвязанных производств по номенклатуре, качеству, производительности и надежности техники и постоянная замена существующих технологических процессов более совершенными заставляют машиностроителей отказываться от традиционных методов конструирования и организации производства. Мировая практика показывает, что наиболее эффективными здесь являются переход к автоматизированному проектированию и изготовлению машин и сращивание процессов проектирования и изготовления современных машин в единую цепочку.

Такой подход в несколько раз ускоряет проектирование и производство машин и делает достижения научной и конструкторской мысли реальными уже сегодня.

Приоритетными на первом этапе реконструкции машиностроительного комплекса будут отрасли: станкостроения, приборостроения, электроники и электротехники. Потому, что они служат базой для создания реальных предпосылок перевооружения производственного аппарата самого машиностроения новыми техникой и технологиями. Обновление производственного аппарата с последующим омоложением парка оборудования позволит сократить численность ремонтников и оборудования для производства запасных частей.

Таким образом, путь развития машиностроения включает:

* ускорение научно-технического прогресса;

* широкомасштабное внедрение новых машин и оборудования, а также технологических процессов;

* использование прогрессивных конструкционных материалов;

* совершенствование организационной структуры;

* углубление специализации и развитие кооперации.

Достижения машиностроителей вызывают восхищение, но машины устаревают в короткие сроки, требуется замена более новыми: производительнее, мощнее, надежнее. Процесс совершенствования науки и техники бесконечен, поскольку неотделим от процесса развития и совершенствования всей цивилизации.

Подобные документы

    Специальность "Технологии машиностроения" как одна из ведущих и перспективных в соответственной отрасли. Основные задания данной дисциплины. Проектирование конструкторской и создание технологической документации. Основные способы получения заготовок.

    презентация , добавлен 26.12.2011

    Изучение современного состояния машиностроения и размещения по РФ. Характеристика тенденций развития тяжелого, среднего и общего машиностроения: станкостроение, автомобилестроение, авиационная промышленность. Внедрение нанотехнологий машиностроение.

    курсовая работа , добавлен 22.03.2010

    Основы технологии машиностроения - пособие для студентов всех машиностроительных специальностей. Обучение самостоятельному проектированию технологических процессов. Краткое изложение теоретических положений с проектными задачами и образцами их решения.

    методичка , добавлен 08.07.2009

    Оптимизация режимов и процессов изготовления машин как важнейшее временное направление развития технологии машиностроения. Особенности построения циклограммы работы автоматической линии. Знакомство с технологическим процессом изготовления валика.

    дипломная работа , добавлен 04.05.2014

    Основные направления развития современной технологии машиностроения: разработка видов обработки заготовок, качества обрабатываемых поверхностей; механизация и автоматизация сборочных работ. Характеристики технологического оборудования и приспособлений.

    курсовая работа , добавлен 14.12.2012

    Тяжелое, общее и среднее машиностроение. Особенности размещения машиностроения в РФ. Современное состояние машиностроения РФ. Основные негативные факторы, ограничивающие развитие. Научный, интеллектуальный, кадровый и производственный потенциалы.

    презентация , добавлен 24.04.2016

    Традиционный метод решения технических задач и кустарный промысел. Особенности чертежной тактики машиностроения и современного проектирования. Использование способов "мозгового штурма", синектики, морфологического анализа и ликвидации тупиковых ситуаций.

    реферат , добавлен 09.02.2011

    Основные характеристики механического цеха на заводе тяжелого машиностроения. Расчет сечения электрических кабелей и вводно–распределительных устройств. Проведение укладки кабеля. Монтаж концевых заделок. Суммарная трудоемкость и формирование бригады.

    курсовая работа , добавлен 25.01.2015

    Рассмотрение основных особенностей технологического процесса изготовления детали "Зеркало". Технология машиностроения как наука, занимающаяся изучением закономерностей процессов изготовления машин. Этапы расчета необходимого количества оборудования.

    курсовая работа , добавлен 19.12.2012

    Методические указания по выполнению курсового проекта по предмету "Технология машиностроения". Описание конструкции и служебное назначение детали. Технологический контроль чертежа и анализ детали на технологичность. Определение типа производства.

А.Г. Сусловым был проведен анализ прогнозов развития науки, техники и технологии в начале XXI века, научно-технических публикаций, тематики защищаемых диссертаций, грантов и научно-технических проектов, предложения ученых-технологов, которые позволили ему сформулировать основные направления дальнейшего развития технологии машиностроения :

1. Совершенствование и оптимизация существующих и разработки новых энерго- и материалосберегающих технологических процессов изготовления изделий машиностроения.

В настоящее время существуют типовые технологические процессы изготовления различных деталей. Однако развитие заготовительного производства и самой технологии машиностроения, металлорежущих станков и инструментов приводит к необходимости пересмотра этих типовых технологий с позиции оптимизации, энерго- и материалосбе- режения при изготовлении деталей машин.

Так, возможность получения заготовок зубчатых колес с зубьями привело к пересмотру типовой технологии их изготовления, что позволило осуществить значительно материале- и энергосбережение, а следовательно, снизить технологическую себестоимость зубчатых колес.

Этим направлением практически занимаются все научные технологические школы и машиностроительные предприятия.

2. Совершенствование и оптимизация существующих и разработка новых наукоемких, комбинированных технологических методов обработки заготовок.

Это направление требует системного подхода и создания научных основ по целенаправленному совершенствованию существующих и разработке новых и комбинированных методов обработки заготовок.

Совершенствование и оптимизация существующих методов обработки осуществляется по режимам, качеству обрабатываемой поверхности, точности обработки, энергозатратам, производительности и технологической себестоимости. Комплексной и наиболее перспективной оптимизацией естественно является оптимизация по технологической себестоимости.

Новыми наукоемкими технологическими методами обработки являются методы, базирующиеся на использовании фундаментальных наук и явлений - физических, химических, электрических. К таким методам обработки относятся: отделочно-унрочняющая обработка поверхностным пластическим деформированием (ОУО ППД), электроэро- зионная, электроимпульсная, электронно-лучевая, светолучевая, ультразвуковая, лазерная, магнитная, химическая и др.

В свою очередь ОУО ППД включает в себя: обкатывание, раскатывание, накатывание, калибрование, дорнование, выглаживание, вибронакатывание, дробеструйная обработка, обработка инструментами центробежно-ударного действия.

Лазерная технология (резка, сверление, гравировка, измерение, диагностика, балансировка, контроль качества) отличается большой гибкостью. Смена заготовки не требует замены инструмента.

К комбинированным методам обработки относятся: электромеханическая, термомеханическая, химико-механическая, физико-химическая, механо-физико-химическая, т. е. методы, которые базируются на двух и более явлениях (физических, химических, электрических).

Это направление позволяет снизить себестоимость изготовления деталей, особенно из труднообрабатываемых материалов и повысить их качество.

3. Технологическая модификация поверхностных слоев деталей машин.

Под модификацией поверхностного слоя понимается его изменение или нанесение покрытий. К таким методам относятся: диффузионное насыщение, лазерное легирование, элекгродуговое и плазменное нанесение покрытий, ионная имплантация, химическое и гальваническое покрытие, напыление, эмалирование и эмогонирование, электролитическое нанесение покрытий и др. Это направление позволяет экономить дорогостоящие материалы и повышать долговечность машин.

4. Технологическое создание закономерно изменяющегося оптимального качества поверхностного слоя деталей машин, исходя из его функционального назначения.

К этим технологиям относятся различные методы обработки, позволяющие автоматически изменять условия по обработке одной поверхности. Это точение на станках с ЧПУ с изменением скорости и подачи ОУО ППД на станках с ЧПУ за счет изменения усилия, скорости и подачи. Эго электромеханическая обработка за счет изменения силы тока и др. Развитие этого направления позволяет повысить долговечность деталей с криволинейными поверхностями трения.

5. Высокоточные прецизионные нанотехнологии, позволяющие обеспечивать точность обработки порядка ангстрема и получать поверхность с шероховатостью Яг = 0,001 мкм.

Развитие этого направления актуально для производства прецизионных изделий.

Сверхточная обработка выдвигает повышенные требования к обрабатываемости и химсоставу материала заготовки. Разброс значений параметров, характеризующих механические и физические свойства загоговок, не должен превышать 0,1 % номинала. Эго обеспечивают, как правило, наноматериалы.

6. Высокоскоростные технологические методы обработки. Доведение скорости лезвийной обработки до 30 м/с, алмазно-абразивной - до 300 м/с.

Высокоскоростное резание особенно широко применяется при изготовлении сложных деталей, в процессе обработки которых в стружку уходит 70...80 % массы заготовки.

Высокоскоростная обработка перспективна и для изготовления деталей простой формы типа плит. Хорошие результаты получены при высокоскоростной токарной обработке.

Высокоскоростное резание стало возможным в результате освоения прогрессивного режущего инструмента на основе мелкозернистого твердого сплава с покрытиями, керамики, кубического нитрида бора, алмазного инструмента.

В настоящее время при высоких скоростях резания обрабатывают около 200 марок металлов и сплавов. При этом производительность увеличивается в 3... 10 раз, повышается качество поверхности и точность, что связано с повышенным демпфированием в зоне резания, лучшими условиями образования и отвода стружки, уменьшением сил резания (вследствие изменения характера разрушения материала и преобладание хрупкого разрушения).

7. Технологическая наследственность по свойствам материала, точности размеров и качеству поверхностного слоя деталей от производства материалов до эксплуатации.

Это направление позволяет повыси ть качество деталей, снизить себестоимость их изготовления и повысить надежность изделий, особенно высокоточных.

8. Совершенствование конструкторско-технологического размерного анализа изделий машиностроения с учетом качества сопрягаемых поверхностей и его полная автоматизация.

Это направление в значительной мере позволит оптимизировать точность деталей и снизить себестоимость их изготовления.

9. Технологическое обеспечение и повышение непосредственно эксплуатационных свойств деталей машин и их соединений (статической и усталостной прочности, коррозионной стойкости, статической и динамической контактной прочности, контактной жесткости, прочности посадок, герметичности, износостойкости).

Накопление банка данных по этому направлению позволит перейти к одноступенчатому решению проблемы обеспечения и повышения надежности изделий. Оно позволяет значительно сократить время конструкторско-технологической подготовки производства и повысить ее надежность с точки зрения обеспечения качества изделий.

10. Адаптивное автоматизированное управление качеством обрабатываемых деталей и собираемых изделий.

Реализация эгото направления в значительной мере определяется разработкой и созданием средств активного быстродействующего контроля точности размеров, параметров качества поверхностного слоя детали в процессе обработки. При наличии этих средств и банка данных по взаимосвязи точности и параметров качества поверхностного слоя деталей с условиями обработки позволит решить эту проблему на станках при современных системах их управления от ЭВМ.

11. Создание самообучающихся технологических систем.

Эти системы позволяют без длительных исследований обеспечивать требуемое качество деталей с наивысшей производительностью из новых материалов при обработке на станках с ЧПУ. Они могут найти широкое применение в авиакосмической и военной промышленности. Таким образом, это направление значительно сокращает технологическую подготовку производства новых изделий.

12. Совершенствование существующих и разработка новых технологических методов сборки.

Сюда относятся тепловая, гидропрессовая и ультразвуковая сборка, технология гладкорезьбовых соединений, монтаж и демонтаж изделий без болтов и гаек, создание термостойких высокопрочных клеевых соединений, сборка с самотвердеющими высокопрочными компенсаторами и др.

13. Объединение технологий проектирования, изготовления и эксплуатации, ремонта и утилизации в единый процесс.

Рассматривая при проектировании технологию изготовления и эксплуатации как единый процесс, можно значительно снизить себестоимость изделий, повысить их долговечность.

Появляется возможность ряд финишних операций перенести в процесс приработки деталей и наоборот ряд отрицательных явлений - из эксплуатации в технологию изготовления. Например, технологию нанесения медной приработочной пленки перенести в эксплуатацию путем добавления медного порошка и глицерина в смазку. Возможные пластические деформации резьбы при действии динамических нагрузок, приводящие к самоотвинчиванию шпилек, можно перенести в технологию изготовления и т. д. Это направление позволяет оптимизировать качество изделий и снизить их себестоимость на всей стадии их жизненного цикла и решить проблему конкурентоспособности изделий машиностроения.

14. Новая технология создания деталей не снятием припуска, а их выращиванием (прототипирование).

Это направление позволит значительно сократить время на создание моделей различных изделий.

15. Совершенствование САПР ТП и создание ИПИ-технологий.

Создание единого конструкторско-технологического и управленческого языка программирования позволит значительно сократить конструкторско-технологическую подготовку производства и снизить ошибки но вине программистов. Требуются работы по заполнению «белых няген» в банке данных для САПР ТП. Этот направление позволят моделировать и исследовать виртуальные технологические процессы.

Использование средств искусственного интеллекта для технологического проектирования и управления технологическими процессами.

16. Создание технологий, базирующихся на модульном принципе.

По определению профессора Базрова Б.М. под модульным принципом понимается построение различных технических систем с разнообразными характеристиками путем компоновки их из типовых модулей ограниченной номенклатуры. Реализация модульного принципа в машиностроении требует разработки:

  • методов замещения изделий множеством модулей;
  • общих принципов построения из модулей и средств технологического обеспечения;
  • методов унификации модулей изделий и средств их технологического обеспечения.

Развитие этого направления позволит значительно повысить эффективность и конкурентоспособность машиностроительного производства.

  • 17. Разработка технологических проектов по оптимальному перевооружению машиностроительных производств, с целью их интенсификации, гибкости и конкурентоспособности.
  • 18. Технологические среды и самоорганизующиеся технологические системы. Технологические системы являются динамическими, т. е. изменяющимися и развивающимися во времени, поэтому они должны быть самоорганизующимися. Развитие этого направления позволит гарантировать качество изделий, несмотря на износ инструмента, изменение состояния технологического оборудования и других условий.
  • 19. Технологии для комиьютерно-интшрированных гибких машиностроительных производств.

Характеризуется следующими факторами:

1. Создание новых машин и оборудования, предназначенных для принципиально новых и совершенствования существующих технологических процессов.

2. Создание комплексной автоматизации на основе микропроцессорной техники, разработке ГПС и широком применении высокоэффективных систем машин, для всех стадий производственного цикла – от поступления сырья до отгрузки готовой продукциии.

3. Увеличение единичной мощности машин и систем, что обеспечивает повышение скорости осуществления технологических процессов.

4. Внедрение безотходных технологий.

5. Переход к принципиально новым технологическим процессам и видам оборудования повышенной производительности.

6. Самое широкое применение информационных технологий на основе знаний фундаментальных, технических и специальных дисциплин при проектировании конструкций машин, инструментов, средств технологического оснащения и разработке прогрессивных технологических процессов

Машина полезна лишь, если она обладает требуемым качеством и способна удовлетворять потребность людей.

При создании машины ставится две задачи:

1. создать машину качественной;

2. затратить наименьшее количество труда и других ресурсов при ее создании и изготовлении.

Процесс создания машины состоит из трех основных этапов:

1. проектирование машины

2. разработка технологических процессов (ТП) изготовления машины

3. изготовление

В результате проектирования создаются чертежи машины.

Проектирование ТП содержит комплекс проектных работ по выбору методов обработки, обеспечению технологичности изделия, выбору средств технологического оснащения, режущего и контрольно-измерительного инструмента, расчеты режимов и норм времени, расчету технологической себестоимости.

В процессе изготовления появляется машина.

Все три этапа создания машины должны базироваться на творческом подходе и оптимизационных методах решения задач.

Создание машины можно представить в виде схемы (рис.1.1). Изготовление машины связано с использованием различных способов обработки металлов.

Рис. 1..1. Создание машины

Краткая история возникновения металлообработки в России

; в X в. Русские ремесленники обладали высокой техникой изготовления оружия, предметов обихода и т.п.;

· в XII в. Русские оружейники применяли сверлильные и токарные устройства с ручным приводом и вращательным движением инструмента или заготовки

· в XIV – XVI в.в. использовались токарные и сверлильные устройства с приводом от ветряной мельницы;

· в XVI в. в селе Павлове на Оке и в окрестностях г. Тулы существовала металлообрабатывающая промышленность;



· А.И.Нартов (1718-1725) создал механический суппорт для токарного станка;

· М.В. Сидоров (1714) на тульском оружейном заводе создал «вододействующие» машины для сверления оружейных стволов;

Яков Батищев построил станок для одновременного сверления 24 ружейных стволов;

· М.В.Ломоносов (1711-1765) построил лоботокарные, сферотокарные и шлифовальные станки;

· И.И.Ползунов (1728-1764) построил цилиндрорасточные и др. станки для обработки деталей паровых котлов;

· И.П.Кулибин (1735-1818) построил станки для изготовления зубчатых колес часовых механизмов;

· в конце XIX и начале XX в.в. на некоторых предприятиях начали указывать на рабочих чертежах допуски на изготовление деталей.

Зарождение технологии машиностроения, как отрасли науки связывают с появлением трудов, содержащих описание опыта производство процесса.

Впервые положение о технологии сформулировал и определил академик В.М.Севергин в 1804 г. А в 1817 г.: «технология – наука о ремеслах и заводах». Впервые был изложен опыт производства профессором Московского университета И.А. Двигубским в книге «Начальные основания технологии или краткое описание работ, на заводах и фабриках производимых».

Дальнейшее описание выполнено Тиме И.А. (1838-1920 г.г.) в первом капитальном труде «Основы машиностроения. Организация машиностроительных фабрик в техническом и экономическом отношении и производство в них работ», вышедшим в 1885 г. Позже Гавриленко А.П. (1861-1914г.г.) создал курс «Технология металлов».

Затем появились работы не просто обобщающие опыт, но и выявляющие общие зависимости и закономерности. Соколовский А.П. в 1930-1932 г.г. издал первый труд по технологии машиностроения. В 1933 г. Появился труд Каширина А.И. «Основы проектирования технологических процессов» и «Теория размерных цепей», разработанная Балакшиным Б.С., а в 1935г. – «Технология автотракторостроения», в котором Кован В.М. и Бородачев Н.А. занимались анализом качества и точности производства. Исследованием жесткости, применительно к станкам, в 1936 г. занимался Вотинов К.В. Работы ЗыковаА.А. и Яхина А.Б. положили начало анализу причин возникновения погрешностей при обработке. В 1959 г. Кован В.М. разработал методику расчета припусков. Исследования в области технологии машиностроения продолжили Глейзер Л.А., Корсаков В.С., Колесов И.М., Чарнко Д.В. и др.,

Технология машиностроения как наука (в современном понимании) прошла в своем развитии несколько этапов. Можно выделить четыре этапа.

Первый этап (до1929-1930г.г.) характеризуется накоплением отечественного и зарубежного производственного опыта изготовления машин. Публикуются описания процессов обработки различных деталей, применяемого оборудования и инструментов. Издаются руководящие и нормативные материалы ведомственных проектных организаций страны.

Второй этап (1930-1941г.г.) характеризуется обобщением и систематизацией накопленного производственного опыта и началом разработки общих научных принципов построения технологических процессов.

Третий этап (1941-1970 г.г.) отличается интенсивным развитием технологии машиностроения, разработкой новых технологических идей и формированием научных основ технологической науки.

Четвертый этап – с 1970 г. по настоящее время отличается широким использованием достижений фундаментальных и общеинженерных наук для решения теоретических проблем и практических задач технологии машиностроения.

Современное представление технологии машиностроения – это отрасль технической науки, которая изучает связи и закономерности в производственных процессах изготовления машин.


3. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ В ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

Конфуций учил давать вещам правильные имена. В этом залог будущего успеха.

Исходный продукт процесса – предметы природы, сырье или полуфабрикат.

Сырье – предмет труда, на добычу или производство которого, был затрачен труд.

Полуфабрикат – сырье, которое подвергалось обработке, но не может быть потреблено как готовый продукт.

Продукция – это результат производства в виде сырья, полуфабриката, созданных материальных и культурных благ или выполненных работ производственного характера.

Для превращения предметов природы в полезное изделие служит производственный процесс.

Процесс (в широком смысле слова) – последовательные изменения какого-либо предмета (явления) или совокупность последовательных действий, направленных на достижение определенного результата.

Реальный ход процесса, выполняемого машиной, отличается от идеального из-за непрерывно меняющихся условий. Не остаются постоянными во времени качество исходного продукта, количество сообщаемой энергии, изменяется состояние окружающей среды и самой машины, что приводит к нестабильности качества, количества продукции, производимой в единицу времени, и ее стоимости (рис.25.1).

Рис. 2.1. Нарушения намеченного хода процесса

Производственный процесс включает этапы, которые проходит предмет природы на пути превращения в изделие. Например, добытая железная руда, в процессе плавки превращается в металл, затем поступает на машиностроительные заводы и после различного рода обработки (со снятием и без снятия стружки) превращается в детали. Из деталей при помощи сборки и последующей отделки получается готовое изделие.

В состав производственного процесса включаются все действия по изготовлению и сборке продукции, контролю ее качества, хранению и применения на всех стадиях изготовления, организации снабжения, обслуживания рабочих мест и участков, управление всеми звеньями производства, а также работы по технической подготовке производства.

Технологический процесс (ТП) – часть производственного процесса, включающая в себя последовательное изменение размеров, формы, внешнего вида или внутренних свойств предмета производства и их контроль (т.е. происходит качественное изменение состояния объекта производства – материала заготовки, детали, машины).

Технологические процессы строятся по отдельным методам их выполнения (процессы механической обработки, сборки, литья, штамповки, термообработки, покрытия, окраски и т.д.).

В технологический процесс включают ряд дополнительных действий орудий производства и рабочих: контроль качества, очистка заготовки и изделий, транспортировка и т. д.

Для выполнения технологических процессов должно быть организованно и надлежащим образом оборудовано рабочее место.

Рабочее место – элементарная единица структуры предприятия (часть объема цеха), где размещаются исполнители работы, обслуживаемое или технологическое оборудование, часть конвейера, оснастка и предметы труда (инструмент, приспособления, ПТО, стеллаж для хранения заготовок, деталей или сборочных единиц.

ТП изготовления машины или детали обычно делится на несколько частей.

Технологическая операция (ТО)– законченная часть технологического процесса, выполняемая на одном рабочем месте (ГОСТ 3.1109 – 82).

Примеры: обработка детали и нескольких деталей на станке, штамповка нескольких деталей на прессе, сборка на валик нескольких деталей (зубчатое колесо, втулки, подшипники), шабрение направляющих станины, установка и закрепление двигателя на шасси автомобиля.

Технологическая операция является основной единицей производственного планирования и учета. На основе операций определяют трудоемкость изготовления изделий и устанавливаются нормы времени и расценка, задается требуемое количество рабочих, оборудования, приспособлений и инструментов; определяется себестоимость обработки; производится календарное планирование производства и осуществляется контроль качества и сроков выполнения работ.

В условиях автоматизированного производства под операцией понимают законченная часть технологического процесса, выполняемая непрерывно на автоматической линии, которая состоит из нескольких станков связанных автоматическими действующими транспортно-загрузочными устройствами.

Кроме технологических операций, в состав ТП в ряде случаев включаются вспомогательные операции (транспортные, контрольные, маркировочные, по удалению стружки и т. п.) не изменяющие размеров, формы, внешнего вида или свойств обрабатываемого изделия, но необходимые для осуществления технологических операций.

Основными технологическими элементами, из которых формируются операции являются переходы.

Технологический переход законченная часть технологической операции, выполняемой над одной или несколькими поверхностями заготовки, одним или несколькими одновременно работающими без изменения или при автоматическом изменении режимов работы станка.

При этом автоматическое изменение режимов работы станка внутри одного технологического перехода имеет место в период обработки заготовок на станках с программным или адаптивным управлением. В случае использования обычных металлорежущих станков технологические процессы, как правило, осуществляются при неизменных режимах их работы.

Например: проточка одной ступени вала; сверление отверстий; фрезерование поверхности; фрезерование набором фрез нескольких поверхностей (комплектом режущих инструментов); многорезцовая обработка.

Сверление отверстий, зенкерование и развертывание – 3 перехода.

К переходам механической обработки деталей относится и такие законченные элементарные части технологического процесса, как установка и закрепление деталей в приспособлении, ее открепление и снятие (вспомогательные переходы).

Элементарный переход – часть технологического перехода, выполняемая одним инструментом, над одним участком поверхности обрабатываемой заготовки, за один рабочий ход без изменения режима работы станка.

Длина участков поверхности, обрабатываемой с неизменной подачей, и соответствующее ей основное время обработки определяет величину элементарного перехода.

Переходы могут выполняться путем удаления одного или нескольких слоев металла, снимаемых один за другим, одним и тем же инструментом с каждой новой поверхности, или сочетания поверхностей детали. В этом случае говорят о переходе, выполняемом в один проход или несколько проходов.

Проходом – называется однократное относительное движение режущего инструмента и обрабатываемой детали, в результате которого с поверхности или сочетания поверхностей снимается слой материала (один). Например: шлифование ступени вала в один переход при помощи значительного числа проходов.

Примеры переходов: присоединение шпонки к валу, завертывание гайки при соединении 2-х деталей.

Для термообработки – нагрев детали; закалка ее; очистка.

Вспомогательный переход – законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхности предметов труда, но необходимы для выполнения технологического перехода.

Рабочий ход (проход) – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемой изменением формы, размеров, качества поверхности и свойств заготовки.

Установ – часть технологической операции, выполняемых при неизменном закреплении заготовок или собираемой сборочной единицы.

Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением, относительно инструмента или неподвижной части оборудования, для выполнения определенной части операции.

Закрепление – приложение сил и пар сил к предмету труда дня обеспечения постоянства его положения, достигнутого при базировании.

Различие между установкой и позицией заключается в том, что при каждой новой установке объект производства меняет свое положение относительно приспособления, стола станка, рабочего места или сборочного стенда. При смене позиции объект производства сохраняет положение относительно приспособления, в котором он установлен и закреплен, и меняет свое положение относительно оборудования, рабочего места или сборочного стенда совместно с приспособлением.

Вспомогательный ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, качества поверхности или свойств заготовки, но необходимого для подготовки рабочего хода.

Прием – законченная совокупность действий человека, применяемых при выполнении перехода или его части и соединенных одним целевым назначением.

Наладка – подготовка технологического оборудования и оснастки к выполнению определенной технологической операции. К наладке относятся установка приспособления, переключение скорости или подачи, настройка на заданный размер и т. д.

Подналадка - дополнительная регулировка технологического оборудования и (или) оснастки в процессе работы для восстановления достигнутых при наладке значений парметров.

Настройка станка на размер – придание лезвию инструмента требуемого расположения относительно баз заготовки

Станкоемкость - время, в течение которого фактически занят (фактическая станкоемкость) или должен быть занят (расчетная станкоемкость) станок, несколько станков или других видов оборудования для выполнения отдельных или всех операций по обработке детали или целого изделия. В соответствии с этим различают станкоемкость операции, станкоемкость детали и станкоемкость изделия. Единицей измерения станкоемкости обычно служит станкочас.

Трудоемкость – количество времени, затрачиваемое работающим при нормальной интенсивности труда на выполнение технологического процесса или его части. Единица измерения человеко-час . Для планирования затрат труда используют:

· норма времени – время, установленное рабочему, соответствующей квалификации на выполнение операции или технологического процесса в нормальных производственных с нормальной интенсивностью труда. Единица измерения – 3ч. 5-го разряда .

· норма выработки (для нормирования малотрудоемких работ) – установленное количество изделий, которое должно быть изготовлено в единицу времени. Единица измерения – 1000шт. в 1ч., 3-го разряда .

Масштаб выпуска характеризует примерное количество машин, деталей или заготовок, выпускаемых или подлежащих выпуску заводом или каким-либо
его цехом в единицу времени (год, квартал, месяц).

Цикл – отрезок календарного времени, определяющий длительность периодически повторяющейся технологической операции от начала до ее конца.

Интенсивность производства одинаковых изделий характеризуется тактом выпуска.

Такт выпуска – промежуток времени, через который периодически осуществляется выпуск изделия. Если говорят, что машину изготовляют с тактом в 5 мин, это значит, что через каждые 5 мин завод выпускает машину.

Ритм выпуска – величина обратная такту.

Партия – количество заготовок (изделий) одного наименования и типоразмера, одновременно (или непрерывно) поступающих для обработки на одно рабочее место в течение определенного времени. Количество заготовок (деталей) в партии определяется на основе технико-экономического расчета.

Показатели производственного и технологического процесса (трудоемкость, цикл, такт) могут быть номинальными, действительными и измерительными. Случайный характер действительных и измерительных значений показателей производственного и технологического процесса заставляет рассматривать их во времени с позиции теории случайных функций.

В зависимости от потребностей, машины изготавливают в разных количествах, определяемых объемом и программой выпуска.

Объем выпуска характеризует примерное количество машин, деталей, заготовок, изделий , подлежащих выпуску в течение планируемого периода времени (год, месяц). Это понятие используется на стадии проектирования завода, цеха, технологического процесса.

Программа выпуска – перечень изделий с указанием количества выпуска по каждому наименованию на планируемый период (год, месяц).

Серия – общее число изделий, подлежащих изготовлению по неизменным чертежам. Размер серии зависит от совершенства конструкции и степени спроса у потребителей.

Обработка деталей машин осуществляется на технологическом оборудовании с применением технологической оснастки.

Технологическое оборудование – средство технологического оснащения для размещения в нем материалов или заготовок, воздействующие на них средства, а также технологическую оснастку.

Технологическая оснастка – средство технологического оснащения, дополняющее технологическое оборудование для выполнения определенной части технологического процесса. (режущий инструмент, приспособления, измерительные средства.

Технологическое оборудование совместно с технологической оснасткой называют технологической системой .

Поточный вид Заготовки без задержек передаются с одной операции на другую, а деталь сразу на сборку. Деталь и сборка находятся в постоянном движении со скоростью, подчиненной такту выпуска. Все необходимое оборудование расставляется по ходу технологического процесса. Поточный вид организации применяется в массовом и в крупносерийном типе производства при изготовлении изделий близких по-своему служебному назначению, которые объединяют в группы. Изготовление ведут поточным методом в пределах одного изделия, со сменой изделия меняется поток и такт выпуска. Такой вид организации называется переменно-поточным

Непоточный вид – движение заготовок на разных стадиях изготовления прерывается пролеживанием на рабочих местах или на складах. Не соблюдается такт выпуска.. Непоточный вид применяется в единичном и мелкосерийном типах производства


ГЛАВА 3. МАШИНА КАК ОБЪЕКТ ПРОИЗВОДСТВА.

3.1. ПОНЯТИЕ О МАШИНЕ И ЕЕ СЛУЖЕБНОМ НАЗНАЧЕНИИ

Понятие машины охватывается большое число самых различных объектов, применяемых человеком для своих трудовых и физических функций. Машина - механизм или сочетание механизмов, осуществляющих целесообразные движения для преобразования энергии или производства работ

Целью создания машин является увеличение производительности и облегчение физического труда человека. В некоторых случаях машина может заменять умственный труд. Например, ЭВМ заменяют человека или помогают ему в проведении необходимых математических операций, информационные машины обрабатывают большое количество заложенной в них информации, выдают необходимые сведения и т.д. Созданные человеком машины могут управлять производственными и другими процессами по определенным, заранее установленным программам и в некоторых случаях автоматически обеспечивать процессы с оптимальными результатами.

Машины в некоторых случаях могут заменять отдельные органы человека, такие, как конечности (механизмы манипуляторов, протезы), искусственное сердце и др.

Роль человека – только функция управления машиной.

Машины различают в зависимости от рода выполняемых работ:

1. Энергетические – преобразуют любой виды энергии (паровая турбина, электродвигатель, электрогенератор и др.)

2. Транспортные – изменяют положение материала, перемещение груза (от велосипеда до космических кораблей).

3. Технологические или рабочие машины изменяют, преобразуют форму заготовки, ее свойства, положение (подъемный кран, сеялка, металлорежущий станок, пишущая машинка и др.).

4. Информационные – предназначены для преобразования информации (от арифмометра до ЭВМ).

Для совершения работы у машины есть рабочий орган (РО) (исполнительный орган).

У экскаватора РО – ковш, у токарного станка РО – шпиндель, резцедержатель, У электрических машин РО – ротор, статор, У реактивных самолетов РО – сопло двигателя.

РО приводит в движение, имеющийся в машине двигатель.

Таким образом, у машин есть РО и двигатель.

Для передачи движения от двигателя к РО существует передающий механизм.

Для управления машиной существуют устройства управления: штурвалы, рычаги, педали, кнопки и более сложные автоматические устройства, работающие по программе без участия человека (автоматы).

Таким образом, машина- устройство, выполняющее механические движения для преобразования энергии, материалов и информации.


Рис. 3.2. Машина – средство производства

Является одной из важнейших отраслей промышленности. Его развитие пребывает в тесной взаимосвязи с научно-техническим прогрессом. Отрасль менее наукоемкая, чем информационно-коммуникационные технологии или фармацевтическая сфера. Несмотря на это именно от ее развития зависит состояние всей промышленности. Машиностроительная сфера обеспечивает другие отрасли оборудованием, техникой, вспомогательными инструментами.

Особенности развития

Машиностроение имеет ряд особенностей, которые влияют на размещение основных его производственных мощностей. На основании нижеперечисленных факторов и их сочетания производят классификацию данной сферы. Выделяют тяжелый, средний, общий машиностроительный комплекс.

Большие производства, выпускающие технологически сложную продукцию, размещаются вблизи крупных научно-образовательных центров. Это вызвано потребностью в квалифицированных кадрах, новых разработок в различных сферах промышленности. Например, в России основные наукоемкие производства находятся неподалеку Москвы, Новосибирска, Санкт-Петербурга.

Трудоемкость

Для правильной организации производственного процесса на предприятиях машиностроительной отрасли необходимы квалифицированные кадры. Для выпуска большей части оборудования и машин необходимо затратить огромное количество рабочего времени.

Именно поэтому основные предприятия данной сферы преимущественно размещаются неподалеку крупных городов с большой концентрацией населения. При этом к используемым рабочим кадрам предъявляются высокие требования относительно их квалификации. Самая большая трудоемкость присуща следующим отраслям машиностроения:

  • станкостроение. Самые крупные предприятия размещаются неподалеку Москвы;
  • авиационная отрасль. Хорошо развита в Самаре, Казани;
  • производство электротехники. Крупнейшие предприятия находятся в Ульяновске, Новосибирске.

Все отрасли машиностроения являются потребителями огромного количества черных и цветных металлов. Поэтому заводы, которые особенно сильно нуждаются в этом ресурсе, тяготеют к крупным металлургическим базам. К самым большим металлоемким отраслям относят:

  • производство горно-шахтного оборудования;
  • металлургическая промышленность;
  • энергетическая сфера.

Наличие развитых транспортных узлов

Некоторые отрасли машиностроения при размещении своих производств ориентируются на возможность организации кооперирования. К таким сферам относят автомобилестроение. Основные его производства размещаются в Центре и Поволжье. Это вызвано тем, что выпускаемая продукция в виде автомобилей перевозится на большие расстояния и в разных направлениях. Поэтому данные предприятия находятся около крупных транспортных магистралей.

Некоторые машиностроительные предприятия ориентируются только на своих потребителей. Это вызвано сложностью перевозки изготовленного оборудования из-за их больших габаритов и значительного веса. Такую продукцию более выгодно производить непосредственно в регионе ее потребления.

Например, выпуск тракторов для транспортировки леса осуществляется только в Карелии. Производство комбайнов для переработки зерновых культур хорошо налажено на Северном Кавказе.

Особенности размещения машиностроительных предприятий России

При размещении предприятий идеальный вариант – совпадение территории с источниками сырья и с потребителями готовой продукции. В данном случае прогноз развития таких предприятий утешительный, поскольку они освобождаются от больших расходов на транспортировку.

Становится возможной установка тесных связей между машиностроением и металлургией. Предприятия первого типа освобождаются от многих технологических операций, что снижают стоимость готовой продукции. В свою очередь, металлургические заводы получают отходы от машиностроения и используют их для собственных нужд.

Учитывая то, что сырьевые базы и потребители продукции находятся на разной территории, производственные мощности предприятий размещаются с учетом возможности быстрого сбыта оборудования. Это связано с тем, что расходы на перевозку металла в разы ниже от необходимых вложений для транспортировки готовых изделий. Именно поэтому многие производственные линии преимущественно тяготеют к регионам сбыта готовой продукции, несмотря на свою металлоемкость.

Факторы, влияющие на размещение предприятий машиностроения

Учитывая основные тенденции развития и территориального размещения предприятий машиностроения, большую роль играет специализация и кооперация. Первое направление дает возможность привлекать в производственный процесс мощное и эффективное оборудование, которое обеспечивает автоматизацию многих операций. Специализацию разделяют на такие типы:

  • детальная. Позволяет осуществить выпуск отдельных деталей для определенного оборудования;
  • предметная. Подразумевает выпуск отдельных разновидностей готовой продукции;
  • технологическая. Позволяет осуществить выпуск полуфабрикатов или выполнить какую-то одну серию операций.

Следует не забывать, что специализация тесно связана с кооперированием. Оно подразумевает привлечение нескольких предприятий для организации выпуска одного конечного продукта.

Можно выделить следующие проблемы машиностроения, которые присущи в отечественной промышленности:

  • недостаточные темпы развития ведущих отраслей или в некоторых случаях даже их спад;
  • простои многих производственных линий, что вызвано разными причинами;
  • неправильная организация технологических связей;
  • из-за низкого контроля качества 20-30% производимой продукции нуждается в ремонте спустя год эксплуатации;
  • необходимость обеспечения ускоренного роста производственных мощностей станкостроения, приборостроения и электроники;
  • в мировом хозяйстве отечественное оборудование не занимает ведущих позиций из-за низкого качества;
  • недостаточные темпы обновления оборудования, что приводит к выпуску морально устаревшей продукции;
  • раньше большинство предприятий были ориентированы на обеспечение потребностей оборонной отрасли;
  • необходимость перепрофилирования крупных заводов;
  • потребность в устранении диспозиций для уравновешивания развития всех сфер машиностроения.

Приоритетные направления развития отечественного машиностроения

Перспективы развития и размещения машиностроения в отечественном производственном комплексе определяются решением следующих задач:

  • преимущественное развитие отраслей, которые характеризуются большой наукоемкостью (автомобилестроение);
  • устранение монополий. На данный момент они составляют 80% от всех существующих производств России;
  • увеличение количества высокоразвитых производств по выпуску нефтяного оборудования, различных станков, микроавтобусов;
  • налаживание старых и открытие новых экономических и технологических связей со странами ближнего и дальнего зарубежья;
  • стимулирование инвестиционной привлекательности отечественных предприятий;
  • государственная поддержка предприятий, которые имеют огромные перспективы развития.

Что влияет на развитие отечественного машиностроительного комплекса?

Для успешного развития машиностроения необходимо соблюдать некоторые правила. В частности, очень важно придерживаться условия – 1:2:4. Это означает, что при темпах развития хозяйства и экономики страны в 1, состояние машиностроительной сферы должно равняться 2, а электроника, приборостроение – 4. Данное соотношение идеально, поскольку обеспечивает лучший прогноз для промышленности страны.

В России эта пропорция имеет совсем другой вид – 1:0,98:1. Именно поэтому отечественный машиностроительный комплекс не может составить конкуренцию зарубежным производствам. Достижение указанных пропорций – основная задача, которая должна быть выполнена в ближайшее время.

Другие особенности машиностроения России

Машиностроение имеет огромное значение в экономике России, а его эффективное функционирование обеспечивается наличием широкой сети межотраслевых и внутриотраслевых связей. При изучении данной сферы производства можно выделить следующие ее особенности:

  • на долю машиностроения приходится треть от всего объема производимой Россией продукции;
  • 40% промышленно-производственного персонала страны занято в данной сфере;
  • 25% основных производственных фондов приходится на долю машиностроения;
  • выпускаемая данной отраслью продукция отличается большим разнообразием.

Предприятия машиностроения распространены по всей территории страны. Данная отрасль представлена практически во всех регионах России. Только в одних она является ведущей, а в других функционирует для обеспечения исключительно внутренних потребностей.

Инвестиционная привлекательность машиностроения России

Инвестиционная привлекательность предприятий машиностроения России является очень низкой. Это связано с резким снижением темпа развития во время кризисов, моральным и физическим износом оборудования, отсутствием перспективных научных разработок. Все представленные факторы негативно влияют на развитие экономики всей страны, которая пребывает в тесной взаимосвязи с машиностроением.

На сегодняшний день Россия занимает 30 место в мире по числу поданных заявок на патенты и 31 место по расходам на научно-исследовательские работы. Поэтому она находится позади многих стран мира.

Машиностроение в большой степени зависит от экономической конъюнктуры рынка. При снижении инвестиционной способности компаний, покупающих производимое отраслью оборудование, снижается производственные возможности всей промышленности. Поэтому данная отрасль сильно зависима от чередования периодов экономического роста и кризисов.

Вес машиностроительных отраслей в экономике России

Проблемы и перспективы развития машиностроения России определяют, что эта сфера промышленности относится к самым депрессивным. В 1999 году выпуск персональных компьютеров и легковых автомобилей сохранил свои прежние темпы или даже нарастил их. При этом изготовление других видов продукции машиностроения сократилось больше, чем в 2 раза. Например, производство комбайнов по уборке зерна снизилось в 25 раз.

В конце ХХ века увеличились темпы производства оборудования общественного потребления. В 1999 году стали наращиваться объемы выпуска телевизоров, холодильников и прочей бытовой техники. В данной отрасли присутствует дифференциация предприятий на основании их способности приспосабливаться к новым условиям. Например, в 1999 году производство телевизоров в Новосибирском регионе сократилось больше, чем в 7 раз. При этом выпуск той же продукции в целом по России вырос в 2,5 раза.

С 2000 года развитие машиностроения происходит более интенсивно. Оно имеет свои особенности:

  • большие темпы наращивания производственной мощности наблюдались на территории Европейской части России;
  • восточные регионы развивались не столь интенсивно;
  • увеличение производства Центрального региона на 41% за счет выпуска электропоездов и легковых автомобилей;
  • развитие предприятий Западной Сибири основано на внедрении государственной программы по выпуску нефтегазодобывающего оборудования;
  • предприятия Восточной Сибири не столь развиты. Скачок производства только в тяжелом, транспортном и сельскохозяйственном машиностроении.

Развитие машиностроения России по отраслям

Отраслевая структура машиностроения России сложная. Предприятия данной сферы производства размещаются практически во всех регионах страны.

Тяжелое машиностроение

Тяжелая отрасль машиностроительной промышленности отличается большой металло- и трудоемкостью. Ее разделяют на следующие сферы:

  • металлургическая. Характеризуется высокой стоимостью готовой продукции, а ее предприятия находятся вблизи регионов добычи стали;
  • горная. Выпускает оборудование для добычи полезных ископаемых разного типа, и размещается в регионах потребления готовой продукции;
  • подъемно-транспортная. Отрасль имеет огромное значение для обеспечения потребностей строительства, промышленности;
  • тепловозостроение, вагоностроение, путевое машиностроение. Работает для обеспечения потребностей железнодорожного транспорта;
  • трубостроение. Производит турбины (гидравлические, паровые, газовые) для потребностей электростанций, газоперекачивающее и другое оборудование;
  • атомная. Производит оборудование для работы АЭС;
  • электротехническая. Выпускает более 100 наименований продукции для обеспечения потребностей практически всего народного хозяйства;
  • станкоинструментальная. Специализируется на выпуске станков для переработки металла, дерева и на ремонте производимого оборудования.








Для выпуска продукции приборостроения необходимо привлекать квалифицированные кадры и постоянно заниматься научно-исследовательской работой. Отрасль характеризуется низкой металло- и энергоемкостью. В России доля продукции приборостроения относительно всего объема изготовленного оборудования машиностроением составляет 12%.

Машиностроительный комплекс для легкой и пищевой промышленности

Сюда относятся направления, которые специализируются на выпуске оборудования для следующих сфер промышленности:

  • трикотажной;
  • меховой;
  • кожаной;
  • производство химических волокон;
  • пищевой.








Около 90% заводов, относящихся к сфере, размещаются в Европейской части России. Это вызвано их ориентацией на потребителя.

Авиационная промышленность

Для эффективной работы авиационной промышленности в стране развивали другие отрасли, поставляющие комплектующее оборудование. Она может функционировать только благодаря привлечению квалифицированных кадров. Поэтому ее предприятия размещаются в крупных промышленных центрах России – Москве, Воронеже, Казани, Самаре и других.

Специализируется на выпуске орбитальных космических кораблей, спутников и прочей продукции данного типа.

Автомобилестроение считается крупнейшей отраслью машиностроения России. Больше 80% производимых грузов приходится на продукцию этой сферы. Основные предприятия размещены в европейской части страны около крупных транспортных узлов.

Основные производственные мощности отрасли размещены в следующих регионах страны:

  • Поволжском;
  • Северо-Кавказском;
  • Уральском;
  • Центральном;
  • Волго-Вятском;
  • Западно-Сибирском.

Судостроительная отрасль

Основные предприятия, несмотря на большую металлоемкость, находятся в дали металлургических баз. Это вызвано трудностями транспортировки готовой продукции. Большинство предприятий размещено в устьях рек или в защищенных гаванях.

Развитие машиностроения в мире

В мировом народном хозяйстве ведущие позиции по выпуску продукции машиностроения занимает Европейский союз, Китай, Соединённые Штаты Америки и Япония. Первый из них является лидером по валовому выпуску оборудования. При этом в последние годы Китай является мировым лидером по производству условно-чистой продукции.

На протяжении последнего десятилетия в Европейском Союзе наблюдают прирост производства на 1,1%. В то же время в США и Японии происходит некоторое падение машиностроения на 1,1% и 3,1% соответственно.

В период с 2000 по 2002 год общая занятость населения в отрасли в развитых странах постепенно сокращается. При этом в Китае число рабочих ежегодно растет на 5,8%. В этой стране на машиностроительных предприятиях занято больше 6 млн. человек, что в несколько раз превышает показатели Европейского Союза. Такая особенность связана с тем, что оплата труда в Китае на порядок ниже, чем в других развитых странах мира.

Конкурентные позиции Евросоюза значительно ниже Японии и США. Это вызвано разным развитием экономик стран, находящихся в ЕС. Даже экономически стабильная Германия характеризуется производительностью труда в машиностроительной сфере в 70000 долларов.

Усиление позиций Китая в мире вызвано увеличением числа импортируемой продукции, которая составляет большую часть от мирового рынка торговли. Данный показатель за последние несколько лет вырос с 3% до 13%. Таких темпов развития не наблюдается ни в одной стране мира. В это же время доля США снизилась с 25% до 17%, Японии – с 21% до 16%.