Гипотеза сплошной среды. Гипотеза сплошности газовой среды Гипотеза сплошности газовой среды

Понятие об аэродинамических трубах и гидролотках

Принцип обратимости движения и моделирования в аэродинамике

Гипотеза сплошности среды

Влажность

Влажностью называется физический параметр, который определяет массовое коли-чество водяных паров находящихся в единице объема воздуха.

Абсолютная влажность – это физический параметр, который определяет массу во-дяных паров, содержащихся в 1 см 3 объема воздуха.

Относительная влажность – это физический параметр, который определяет отно-шение абсолютной влажности к массе водяного пара, которая необходима для насыщения 1 см 3 воздуха при заданной температуре.

ЛЕКЦИЯ 1.4 ГИПОТЕЗА СПЛОШНОСТИ СРЕДЫ.

ПРИНЦИПЫ ОБРАТИМОСТИ ДВИЖЕНИЯ И МОДЕЛИРОВАНИЯ В АЭРОДИНАМИКЕ

Схему, которая заменяет дискретную структуру воздуха сплошной средой, впервые предложил известный ученый Л. Эйлер в 1753 г.

Она получила название гипотезы сплошности среды . Применение ее значительно облегчает исследования законов движения воздуха и газов. Как известно, при нормальных условиях в воздуха помещается молекул.

Критерием оценки сплошности среды является число Кнудсена:

Длинна свободного пробега молекул

L – характерный размер течения (длина обтекаемого тела).

Для характеристики степени разреженности среды в пограничном слое используется

отношение длины свободного пробега молекул к толщинй пограничного слоя

Толщина пограничного слоя зависит от характера течения (числа Маха ) и числа Re. В зависимости от числа Кнудсена(течение газа можно разделить на три основ-ные области:

1 Если 0,01, то средняя длина пробега молекул меньше 1 % от толщины пограничного слоя, в этом случае течение считается сплошным. В этом случае газодинамические параметры воздуха ( являются непрерывными величи-нами, то есть имеет место область обычной газовой динамики.

2 Если 1 , то длинна свободного пробега молекул мала по сравне-нию с размером обтекаемого тела, но соизмерима с толщиной пограничного слоя. В этом случае течение называется течением со скольжением .

3 Если 1 , то длинна свободного пробега больше или соизмеримы по вели-чине с толщиной пограничного слоя. В этом случае имеется область свободно молекулярных течений . В этой области элементарные частицы не взаимодейст-вуют между собой и пограничного слоя фактически нет.

С увеличением высоты уменьшается количество молекул в исследуемом объеме га-за, а это приводит к уменьшению силового взаимодействия частиц воздуха с обтекаемым телом. Силы взаимодействия между потоком и телом представляют собой суммарный им-пульс силы ударов частиц воздуха о поверхность обтекаемого тела.



На высотах Н 80 км в расчетах учитывается дискретная структура воздуха.

Рис 1.4.1 Схема гипотезы сплошности среды

Необходимым условием для дифференциального исчисления параметров и аэроди-намических сил при взаимодействии воздуха с телом, является непрерывность газодина-мических параметров ().

Жидкая среда заполняет тот или иной объем без каких-либо промежутков, сплошным образом. Жидкая среда, благодаря изменению расстояния между частицами, меняет внешнюю конфигурацию, т.е. деформируется. Для твердого тела подвижность частиц мала, а для жидких сред – велика. Поэтому, мерой подвижности частиц для жидких сред служат уже не сами смещения, а скорость смещения частиц, т.е. скорости деформаций. Следовательно, для сплошной жидкой среды мерами подвижности частиц служат их скорости и их скорости деформации. Замкнутая поверхность, состоящая из одних и тех же частиц, будет непрерывно деформироваться. Если нет разрыва сплошной среды, то реализуется непрерывность распределения в объеме скоростей и плотностей частиц.

Под частицей сплошной среды подразумевает не любую как угодно малую часть ее объема, а весьма небольшую его часть, содержащую все же внутри себя миллиарды молекул. В общем случае минимальная цена деления макроскопического масштаба пространственной  или временной t координаты должна быть достаточно малой, чтобы пренебречь изменением макроскопических физических величин в пределах  или t, и достаточно большой, чтобы пренебречь флуктуациями макроскопических величин, полученных осреднением микроскопических величин по времени t или элементу пространства  3 . Выбор минимальной цены деления макроскопического масштаба определяется характером решаемой задачи. Для промышленного аппарата можно с достаточной степенью точности принимать в качестве минимальной цены деления пространственных координат 1мм и временных координат 1с.

Движение макроскопических объемов среды приводит к переносу массы, импульса и энергии.

    1. Режимы движения жидких сред

При течение жидкой среды (жидкости) реализуется 2 режима:

Ламинарный,

Турбулентный.

При ламинарным режиме жидкость течет малой скоростью, отдельными струйками, не смешиваясь, параллельно стенкам канала. При этом траектории отдельных частиц не пересекаются, все частицы имеют лишь продольную составляющую скорости.

С увеличением скорости движения потока жидкости картина качественно меняется. Траектории частиц представляют сложные, хаотичные кривые, пересекающие между собой. Во всех точках потока скорость и давление нерегулярно изменяются с течением времени, пульсируют вокруг некоторых своих средних значений, возникают поперечные составляющие скорости. Этот режим движения жидкости называется турбулентным. Режим может меняться с изменением диаметра канала и вязкости жидкости. В турбулентном потоке можно говорить не об актуальных, но только об осредненных за достаточно протяженный отрезок времени величинах скорости и давления.

Между ламинарными и турбулентными режимами движения жидкости находится область развития турбулентности. В этой область турбулентность имеет переменную интенсивность, увеличивающуюся с ростом скорости.

При турбулентном режиме малые возмущения, возникающие в реальных условиях, не затухают, происходит развитие нерегулярного хаотичного движения отдельных объемов среды (вихрей). Вихри не являются устойчивыми, четко ограниченными в пространстве образованиями. Они зарождаются, распадаются на более мелкие вихри, затухают с переходом механической энергии в тепловую.

При выполнении расчетов гидравлических сопротивлений, тепловых и массообменных процессов, происходящих в аппаратах и машинах, необходимо знать режимы течения жидкостей, поскольку для ламинарного режима характерны одни закономерности, а для турбулентного – другие.

Количественно режим течения определяется по критерию Рейнольдса.

Гипотеза сплошности.

«Рассматривать жидкие тела как совокупность отдельных молекул (в каждой отдельно) практически неподвижно, поэтому при изучении жидкости и газов (и вообще деформации тел) вводятся допущения, что эти тела заполняют пространство непрерывно, т.е. характеризуют определенными значениями параметра (плотность, температура, вязкость и тд.). при таком рассмотрении жидкое тело называют сплошной средой или континиумом. Жидкости. Все вещества в природе имеют молекулярное строение. По характеру молекулярных движений, а также по численным значениям межмолекулярных сил жидкости занимают промежуточное положение между газами и твердыми телами. Свойства жидкостей при высоких температурах и низких давлениях ближе к составам газов, а при низких температурах и высоких давлениях - к свойствам твердых тел. В газах расстояния между молекулами больше, а межмолекулярные силы меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.
Молекулы жидкости находятся в непрерывном хаотичном тепловом движении, отличающемся от хаотичного теплового движения газов и твердых тел: в жидкостях это движение осуществляется в виде колебаний (10п колебаний п секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел - колебания относительно стабильных центров. Тепловое движение молекул газа - непрерывные скачкообразные перемены мест.
Диффузия молекул жидкостей и газов обусловливает их общее свойство - текучесть. Поэтому термин «жидкость» применяют для обозначения и собственно жидкости (несжимаемая или весьма мало сжимаемая, капельная жидкость), и газа (сжимаемая жидкость). В гидравлике рассматриваются равновесие и движение капельных жидкостей.
Гипотеза сплошности. Жидкость рассматривается как деформируемая система материальных частиц, непрерывно заполняющих пространство, в котором оно движется.
Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3 1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.
При таком предположении жидкость в целом рассматривается как континуум - сплошная среда, непрерывно заполняющая пространство, т. е. принимается, что в жидкости нет пустот или разрывов, все характеристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим параметрам. Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.
Правомерность применения модели жидкости - сплошная среда подтверждена всей практикой гидравлики.
Гипотеза сплошности нужна для того, чтобы можно было применить дифференциальное исчисление, определенные формулы в математике, которые мы проходим. Если будем рассматривать жидкости как несплошное тело, то нужно применять другую «математику», которая находиться только в стадии развития.

Силы, действующие на выделенный объем сплошной среды (жидкости)

Рассмотрим не­который объем жидкости (содержащийся в сосуде или объем, мыс­ленно выделенный из общей массы жидкости). Приложенные к нему силы можно разделить на массовые и поверхностные.

Массовые силы обусловлены действующим на жидкость силовым полем, они приложены к каждой частице жидкости и пропорцио­нальны их массе, примером таких сил являются силы тяжести, силы инерции переносного движения.

Поверхностные силы обусловлены взаимодействием рассматри­ваемого объема с окружающими его телами; если жидкость налита в сосуд - это силы реакции стенок сосуда; если рассматривается объ­ем, мысленно выделенный из общей массы жидкости - это силы, действующие на него со стороны «отброшенной» жидкости. Во всех случаях эти силы распределены по поверхности выделенного объема и определяются площадью поверхности, на которую они действуют.

Напряжения в сплошной среде. Нормальные и касательные напряжения.

Определим напряжение, возникающее в жидкости под действием массовых сил. Возьмем элементарный объем ∆ V, в котором заключе­на масса жидкости ∆m и приложена массовая сила ∆. F.

Отношение этой силы к массе элементарного объема называется средним напряжением массовой силы и обозначается через а ср, та­ким образом, а ср=│ ∆F │ / ∆m

Если объем элементарной частицы и, следовательно, ее масса стремится к нулю, то получим напряжение массовых сил в точке lim │ ∆F │ / ∆m = d| F | / dm = а. (1.1) при ∆ V → 0 .

Напряжение массовых сил совпадает с ускорением (как следует из второго закона Ньютона), вызываемым этой силой, и имеет его размерность.

Аналогичным образом можно оп­ределить напряжение поверхност­ных сил. Эти силы пропорциональны размеру площадки, на которую они действуют, и непрерывно распреде­лены по ее поверхности; их можно разложить на составляющие: нор­мальную силу сжатия и касательную силу (силу трения).

Поверхностные силы сжатия име­ют место как при равновесии (покое) жидкости, так и при ее движении, а поверхностные силы трения в обычных жидкостях возникают только при их движении.

Пусть на элементарную площадку ∆ω действует поверхностная сила R, направленная под углом а к нормали к площадке (рис. 1.1).

Силу R можно разложить, как указывалось, на нормальную со­ставляющую ∆Р, направленную вдоль нормали к площадке, и на ка­сательную T, лежащую в плоскости касательной к поверхности в точке приложения силы R..

Предел отношения элементарной силы (силы трения) ∆T к пло­щадке∆ω или отношение конечной касательной силы Т к площади w называется касательным напряжением.

т = lim | TI ∆ω| или τ = T/ ω (1.2) ∆ω→0

Нормальные напряжения в жидкости определяются как предел отношения силы давления ∆Р к площадке ∆ω: р = lim | TI ∆ω| ∆ω→0

Нормальные напряжения р называют давлением.

Сопротивление растяжению внутри капельных жидкостей по мо­лекулярной теории может быть весьма значительным. При опытах с тщательно очищенной и дегазированной водой в ней были получены кратковременные напряжения растяжения до 28*10 3 кН. Однако жидкости, содержащие взвешенные твердые частицы и мельчайшие пузырьки газов, не выдерживают даже незначительных напряжений растяжения. Поэтому в дальнейшем будем считать, что напряжения растяжения в капельных жидкостях практически невозможны и в ней могут действовать только сжимающие усилия, вызывающие нор­мальное напряжение.

Теория была введена в практику исследования Даламбером в 1744 году, а затем Эйлером в 1753 году в противовес корпускулярной теории Ньютона.

Воздух атмосферы представляет собой смесь различных газов. До принятия гипотезы сплошности исходили при экспериментах из того, что существует как бы смесь несвязанных между собой молекул газов, между которыми существуют дыры (сито).

Гипотеза сплошности в аэродинамике основана на том, что расстояние между молекулами воздуха и свободный пробег молекул малы по сравнению с обтекаемым воздухом телом. В связи с этим принимается, что воздух (и вода) однородная, сплошная, без разрывов масса .

Длина свободного пробега молекул зависит от числа молекул в единице объема, т.е. от плотности среды. Мы уже знаем, что вся масса воздуха находится в пределах тропосферы (высота Н ≤ 10…17 км) и что плотность сильно уменьшается с ростом высоты над уровнем моря. У Земли (Н = 0) в одном кубическом миллиметре содержится 2,7∙10 +16 молекул воздуха при массовой плотности ρ о ≈ 0,125 кг∙с 2 /м 4 . На высоте Н = 160 км в том же объеме содер-

жится 1 молекула воздуха. А плотность воздуха, например, на высоте Н = 20 км, ρ 20 = 0,008965 кг∙с 2 /м 4 .

Длина свободного пробега по высотам в среднем распределяется следующим образом (таблица 2.2).

Таблица 2.2

Некоторые ученые считают границей применимости гипотезы сплошности отношение длины свободного пробега молекулы воздуха к хорде крыла, равное 1/10 +5 .

Кроме плотности воздуха длина свободного пробега зависит от температуры (т.е. от скорости хаотического движения) и от размеров молекул. Средняя длина пробега молекул воздуха рассчитывается по формуле

где К – отношение теплоемкости воздуха при постоянном давлении с р к его теплоемкости при постоянном объеме с v , т.е.

;

ν – кинематический коэффициент вязкости, м 2 /с; a – скорость звука в воздушной среде в м/с.

Так как параметры ν и a зависят от высоты над уровнем моря, то и параметр L св зависит от той же высоты (см. таблицу 2.2).

Критерием применимости гипотезы сплошности является число Кнудсена

Или , (2.5)

где b – хорда крыла, δ – толщина пограничного слоя.

Окончательно, или другое значение коэффициента Кнудсена таково:

, (2.6)

где М – число Маха, Re – коэффициент Рейнольдса, равный

где v – скорость движения в м/с, b – средняя хорда крыла в метрах, ν – коэффициент кинематической вязкости в м 2 /с (рис. 2.1).

Практический смысл гипотезы сплошности для специалистов в области приборостроения и самолетостроения состоит с возможности определения границ применения способов измерения воздушных параметров, например, манометрического метода при определении скорости, числа М , подъемной силы.

Рис. 2.1. Обтекание крыла потоком воздуха

По Ньютону получалось в его корпускулярной теории, что сопротивление движению есть результат ударов частиц о тело и равно:

где ρ ∞ – плотность воздуха; v – скорость движения; S – площадь крыла.

Теперь мы уже будем знать, что формула неверна, она завышает силу сопротивления в два раза.

Область аэродинамики, рассматривающая движение твердых тел в сильно разреженном газе, называется супераэродинамикой .

Выводы из гипотезы сплошности:

Гипотеза упрощает исследование процессов движения.

Она позволяет рассматривать все механические характеристики жидкой среды – скорости, плотности, давления, числа М и т.д., как функции координат точки и времени. Эти функции предполагаются непрерывными и дифференцируемыми.

Из гипотезы сплошности следуют ограничения применимости методов измерения скоростных параметров. Например, манометрический метод может быть достоверно использован при Н ≈ 30000 метров над уровнем моря, при скоростях, соответствующих числу Re = 10 2 …10 7 .

При большом разряжении воздуха и при несоблюдении критерия Кнудсена воздушную среду нельзя считать сплошной. В этих условиях нельзя считать применяемым и принцип непрерывности течения потока воздуха. В этих условиях иными становятся законы образования силы сопротивления движению и подъемной силы. В свободномолекулярном потоке газа единственными силами воздействия газовой среды на движущееся тело являются силы ударов молекул газа о поверхность тела. Величину аэродинамических сил можно оценить по ударной теории Ньютона.

Свойства реальных жидкостей и газов и особенности их реального движения находят в исходных положениях гидродинамики лишь своё приближённое отражение. Но по мере развития как самой гидродинамики, так и смежных с ней наук эти исходные положения расширяются, благодаря чему степень соответствия их содержания содержанию реальных свойств изучаемого явления повышается. Кроме того, с развитием гидродинамики и смежных с ней наук, с развитием техники экспериментирования постепенно выявляются границы применимости ранее принятых исходных положений и устанавливаются возможные их уточнения.

В период формирования науки гидродинамики её основателями - Эйлером, Даламбером и Лагранжем было принято то основное допущение, согласно которому жидкость или газ заполняют тот или иной объём без каких-либо свободных промежутков, т. е. жидкость или газ представляют собой сплошные среды. Результаты вычислений, полученные при использовании этого основного допущения, в большом

числе случаев хорошо согласуются с результатами соответствующих наблюдений и измерений. Это обстоятельство служит основанием к тому, чтобы и в настоящее время в качестве основного допущения принимать гипотезу о сплошности жидкости и газа.

При гипотезе сплошного заполнения жидкостью или газом конечного объёма за частицу можно принимать любой как угодно малый объём. К такой частице применимы основные кинематические понятия скорости и ускорения точки. Отличие жидкости или газа от абсолютно твёрдого тела будет заключаться в том, что расстояния между частицами жидкости или газа меняются. Благодаря изменениям расстояний между частицами будет происходить изменение внешней конфигурации любой части объёма, заполненного жидкостью или газом. Это изменение внешней конфигурации любой части объёма называется деформацией. Таким образом, жидкость и газ представляют собой сплошные деформируемые среды.

Различие жидкости и газа от твёрдого деформируемого тела находит своё отражение в механике деформируемых сред в том, что к ним применяются различные меры подвижности частиц. Для твёрдого деформируемого тела подвижность частиц мала и поэтому мерой подвижности их служат сами смещения частиц, сами деформации их. Для жидкости и газа подвижность частиц достаточно велика и поэтому мерой подвижности их служат уже не сами смещения, которые во многих случаях весьма велики и не характерны для движения, а скорости смещений частиц, не сами деформации, а их отношения к промежуткам времени их образования, т. е. скорости деформаций. Следовательно, жидкость и газ можно определять как сплошные деформируемые среды, мерами подвижности частиц которых служат скорости частиц и скорости деформаций частиц.

В качестве характеристики проявления материальности жидкости и газа вводится плотность р, представляющая собой предел отношения содержащейся в малом объёме массы к величине этого объёма, т. е.

Отличие жидкости от газа выражается в том, что плотность жидкости считается мало изменяемой, тогда как плотность газа в ряде случаев оказывается сильно изменяемой. Во всех других отношениях между жидкостью и газом имеется много общего. По этой причине далее слово «жидкость» будет употребляться в собирательном смысле» Под этим словом будет подразумеваться как «капельная» жидкость ), так и некоторый газ, плотность которого может изменяться в широких пределах.

Гипотеза о сплошности среды означает не только сплошное заполнение частицами жидкости какого-либо объёма. Она означает также и непрерывность продвижения частиц в том смысле, что каждая

частица не может отделяться от окружающих её частиц, не может отставать от впереди расположенной частицы и не может ее перегонять.

Гипотеза о сплошности среды означает также и непрерывность деформирования любой части объёма. Вследствие этого замкнутая линия, состоящая из одних и тех же частиц, во всё время движения останется замкнутой; замкнутая поверхность, состоящая из одних и тех же частиц, будет непрерывно деформироваться, но оставаться всё время замкнутой.

Но гипотеза сплошности среды не влечет за собой в качестве неизбежного следствия гипотезу о непрерывности распределения скоростей и плотностей частиц. В данный момент времени две соседние частицы могут иметь различные скорости и различные плотности, но в любой следующий момент времени между величинами скоростей и плотностей этих частиц должна существовать определённая зависимость для предотвращения разрыва сплошности среды.

Таким образом, требование непрерывности распределения скоростей и плотностей должно составлять дополнительную гипотезу. Принятие этой гипотезы необходимо для того, чтобы пользоваться математическим аппаратом частных производных.

На основании изложенного мы приходим к тому выводу, что классическая гидродинамика основывается 1) на гипотезе сплошности среды и непрерывности её деформирования, 2) на гипотезе непрерывности распределения скоростей и плотностей частиц.

Разрыв непрерывности скоростей и плотностей может допускаться только для отдельных конечных поверхностей.