Люди — единственная развитая цивилизация во Вселенной? Сколько вселенных во вселенной? Все существующее во вселенной.

Экология познания. Наука и техника: . Когда вы принимаете во внимание, что в Млечном Пути может быть 400 миллиардов звезд, а во Вселенной - около двух триллионов галактик, разумная жизнь кажется вполне распространенным явлением.

Возможно, за всю историю Вселенной не существовало другого разумного, технологически развитого вида существ, кроме людей. Когда вы принимаете во внимание, что в Млечном Пути может быть 400 миллиардов звезд, каждая с тремя потенциально обитаемыми мирами, а во Вселенной - около двух триллионов галактик, разумная жизнь кажется вполне распространенным явлением.

Но интуиция вполне может нас подводить, потому что наши предположения зачастую ненаучны. Величина неизвестных, которые могут быть спрятаны в абиогенезе, эволюции, долгосрочной адаптации и других факторах, не дает нам составить точное уравнение жизни. Существует астрономическое число возможностей развития разумной, технологически развитой жизни, но огромные неопределенности делает вполне возможным вариант того, что люди - единственные космические обитатели.

В 1961 году ученый Фрэнк Дрейк представил первое уравнение, предсказывающее, сколько во Вселенной может быть покоряющих космос цивилизаций. Он опирался на серию неизвестных величин, которые мог оценить приблизительно, и в конечном итоге назвал приблизительное число технологически развитых цивилизаций, которые существовали в прошлом и в настоящем, в нашей галактике и в наблюдаемой Вселенной. Прошло 55 лет, и сегодня некоторые из этих величин позволяют нам сделать более точные прогнозы.

Во-первых, сильно улучшилось наше понимание размера и масштаба Вселенной. Теперь мы знаем, благодаря наблюдениям космических и наземных обсерваторий, охватывающих весь спектр электромагнитных длин волн, насколько велика Вселенная и сколько в ней галактик. Мы стали лучше понимать, как образуются и функционируют звезды, и чем глубже мы вглядываемся в космическую бездну, тем точнее оцениваем число звезд во Вселенной. Звезд во Вселенной было много - порядка 10 24 - и, исходя из этого числа, можно оценивать шансы на появление жизни за 13,8 миллиарда лет.


Мы привыкли удивляться тому, сколько звезд имеют планеты под боком, при этом твердые и с вполне интересной атмосферой, похожей на нашу, и насколько много таких планет находятся на подходящем расстоянии от своей звезды, чтобы на поверхности была жидкая вода. Долгое время мы удивлялись только этому. Но благодаря космическому телескопу «Кеплер», мы узнали много нового:

  • 80-100% звезд обладают планетарной системой или планетами;
  • 20-25% из этих систем обладают планетой в «обитаемой зоне», в которой вода будет оставаться в жидком состоянии на поверхности;
  • 10-20% этих планет похожи на Землю в размерах и массе;

Таким образом, во Вселенной будет около 10 22 потенциально обитаемых планет земного типа с подходящими условиями.

Более того, практически все эти планеты будут обогащены тяжелыми элементами и ингредиентами, необходимыми для жизни. Глядя на межзвездную среду, на облака молекулярного газа, на центры далеких галактик, мы видим все элементы периодической таблицы - углерод, азот, кислород, кремний, серу, фосфор, медь, железо и многое другое.

Заглядывая в метеоры и астероиды в нашей собственной Солнечной системе, мы находим не только эти элементы, но и их органические образования - сахара, бензольные кольца и даже аминокислоты. Другими словами, во Вселенной должно быть не просто 10 22 потенциально обитаемых планет, а 10 22 планет с необходимыми для жизни элементами.


Но на этом наш оптимизм заканчивается. Если, конечно, мы будем честными и скрупулезными. Потому что для того, чтобы появилась развитая цивилизация, должно произойти три монументальных события:

  • Абиогенез - когда сырье, связанное с органическими процессами, внезапно превращается в «жизнь».
  • Жизнь должна просуществовать и пережить миллиарды лет на планете, чтобы обзавестись такими свойствами, как сложность, многоклеточность, дифференциация и «разум».
  • Наконец, разумная жизнь должна стать технологической цивилизацией, чтобы либо объявить о своем присутствии во Вселенной, либо выйти за пределы собственного дома и исследовать Вселенную, либо услышать и обнаружить другие формы интеллекта во Вселенной.

Когда Карл Саган представил «Космос» в 1980 году, он заявил, что разумно было бы дать каждому из этих трех шагов по 10% шанса на успех. Если бы это было правильно, в галактике Млечный Путь существовало бы более 10 миллионов разумных инопланетных цивилизаций.

Есть те, кто утверждает, что суммарно эти три шага имеют вероятность случиться меньше, чем в 10 -22 . Но это само по себе нелепое утверждение, ни на чем не основанное. Абиогенез может быть распространенным явлением; он мог много раз происходить на Земле, на Марсе, Титане, Европе, Венере, Энцеладе или даже за пределами нашей Солнечной системы. Но это может быть такой редкий процесс, что даже если бы мы создали сто клонов молодой Земли - или тысячу, или миллион, или больше - наш мир мог бы стать единственной планетой, на которой появилась жизнь.


И даже если жизнь действительно появится, насколько высока вероятность, что она выживет и будет процветать миллиарды лет?

Будет ли сценарий катастрофического потепления, как на Венере, нормой?

Или сценарий катастрофического замораживания и атмосферных потерь, как на Марсе?

Или жизнь в конечном итоге отравит себя сама своим существованием, как это было на Земле два миллиарда лет назад?

И даже если жизнь выживет в течение миллиардов лет, с какой частотой будут происходить кембрийские взрывы, когда огромные, многоклеточные, макроскопические растения, животные и грибы стали доминировать на планете?

Это может быть относительно распространенным или же редким сценарием, происходящим или в 10% случаев, или вообще практически не происходящим.

И даже если допустить все это, насколько высока вероятность появления технологически развитого, использующего инструменты и запускающего ракеты вида вроде человека?

Сложные рептилии, птицы и млекопитающие, которых можно считать умными по многим показателям, существуют в течение десятков и сотен миллионов лет, но современные люди появились меньше миллиона лет назад, а «технологически развитыми» стали в прошлом столетии. Будет ли 10%-й шанс, что, преодолев предыдущие этапы развития, вы станете космической цивилизацией? В это трудно поверить. И мы не знаем, по правде говоря.

Мы знаем, что разумная жизнь во Вселенной должна появляться довольно часто (10 22). И знаем, что есть небольшой шанс стать покоряющей космос цивилизацией. Но мы не знаем, каков этот шанс - 10 -3 , 10 -20 или 10 -50 . Нам нужны данные. И никакие предположения или заявления их не заменят. Нам нужно найти жизнь, чтобы узнать наверняка о ее существовании. Все остальное - не что иное, как обычные домыслы. опубликовано Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Давайте посчитаем, сколько внеземных цивилизаций существует во Вселенной January 30th, 2018

Если вы скажете, что верите в существование инопланетян, вряд ли ваши друзья будут этим сильно шокированы. Мы даже с вами как то подробно обсуждали, . Но у меня есть для вас конкретная цифра - во Вселенной, насчитывается 2 триллиона галактик, и нужно быть в высшей степени самовлюбленным, чтобы считать, что человек - единственное разумное существо.

Но оказывается, что число технологически развитых цивилизаций можно посчитать...

В 1961 году астроном Фрэнк Дрейк разработал простое уравнение для оценки количества «технически активных» цивилизаций в нашей галактике. Эта простая математическая формула считается второй по степени известности в науке после эйнштейновского уравнения E=MC2.

Если посмотреть на эту формулу, легко увидеть, что в ней учитывается ряд факторов, среди которых вероятность наличия обитаемых планет вокруг звезд, вероятность возникновения жизни и вероятность того, что простые формы жизни эволюционируют таким образом, что в конце появятся разумные существа. Но даже без попыток произвести расчеты на основании уравнения Дрейка, мы можем использовать аналогичные рассуждения, чтобы оценить количество внеземных цивилизаций и расстояние, отделяющее нас от ближайших гуманоидов.

Мы начинаем с недавних исследований, которые показали, что у каждой шестой из звезд есть планета, пригодная для жизни. Не одна на миллион, а каждая шестая. Итак, возьмем это число за основу и продолжим. Мы должны сделать несколько допущений. В частности, решить, какая часть из планет, схожих по размеру с Землей, когда-либо становилась домом для технически развитых обитателей.

Жизнь на нашей планете зародилась довольно быстро: случайная химическая реакция в 1,5 миллионах триллионов кубических метров океанской воды породила репродуцирующую молекулу в течение всего нескольких сотен миллионов лет. Отсюда следует, что для зарождения жизни нужно не так уж много. Затем, вполне обоснованно можно предположить, что, по крайней мере, половина всех пригодных для жизни планет раньше или позже породила какую-либо форму жизни.

С интеллектом несколько сложнее. Динозавры были неплохо сконструированы, но не отличались большими успехами в школе. И все же, давайте предположим, что одна из 100 планет, на которых существует жизнь, в конечном итоге будет отмечена появлением разумных существ. И, по словам Фрэнка Дрейка, предположим также, что любые инопланетяне сумеют продержаться на своей планете в течение 10 тысяч лет, пока не уничтожат сами себя (ядерная война, техногенная экологическая катастрофа, или что-то иное в этом духе) или встретят свой печальный конец по каким-то иным причинам.

Произведя несложные арифметические подсчеты, мы обнаружим, что в каждой из 100 миллионов звездных систем имеется технически развитая цивилизация. Это не сильно отличается от вероятности сорвать джек-пот в лотерее Powerball на следующей неделе.


Итак, насколько близко от нас находятся ближайшие инопланетяне, посылающие сигналы о своем существовании?

Если мы заплатим хорошие деньги за гиперпространственный двигатель, способный перемещаться со сверхсветовой скоростью, и отправимся навестить соседей, насколько далеко нам придется улететь от Земли? Что же, среднее расстояние между звездами в нашей части Галактики составляет 4,2 световых года (расстояние до звезды Проксима Центавра). То есть, в каждом кубе пространства, ребро которого составляет 4,2 световых года, имеется в среднем одна звезда. Теперь давайте представим себе большой куб, с ребром в 2 тысячи световых лет. В нем будет содержаться примерно 100 миллионов звездных систем и где-то среди них - одна развитая цивилизация.

На основании этих грубых и не особенно тщательных расчетов, можно предположить, что ближайшие «пришельцы» находятся на расстоянии от одного до двух тысяч световых лет. Другими словами, не ближе, чем три яркие звезды пояса Ориона. Конечно, соседи могут оказаться гораздо дальше, или ближе. Но эта оценка на уровне порядка величины говорит нам, что они явно не живут по соседству. Они не слышат наших новостных сообщений и маловероятно, что у них есть какие-то мотивы для визита к нам. Они просто ничего не знают о нашем существовании.

Кстати, скорее всего, мы тоже не сможем их посетить. Самым быстрым из сегодняшних ракет понадобилось бы примерно 20 миллионов лет, чтобы добраться туда, а к этому времени даже самые отважные астронавты, скорее всего, ужасно устанут от казенной пищи и иных неудобств полета.

Да, инопланетные цивилизации, вероятнее всего, существуют, и только в одной нашей галактике их может насчитываться до 10 тысяч, не говоря о миллионах других галактик. Возможно, они находятся довольно далеко от нас. Но все же, их можно обнаружить. Вот почему люди упорно продолжают прочесывать небо в поисках радиосигналов, в незапамятные времена запущенных в эфир нашими братьями по разуму.

источники

Наверное, многие задавались вопросом, каков все же внешний облик Вселенной на достаточно большом расстоянии, недоступном наблюдению? Другой вопрос: каков предел того, куда может заглянуть человек?

С момента Большого взрыва космический горизонт человека до самых дальних объектов может быть определен расстоянием в четырнадцать миллиардов световых лет. На данный момент эти объекты удалены на сорок миллиардов световых лет ввиду ускоренного роста Вселенной. Свет от более далеких объектов к нам еще не успел дойти. Итак, что же за горизонтом? Еще недавно по этому поводу физики отвечали: галактики и звезды, ничего нового. Однако благодаря современным достижениям в физике элементарных частиц и космологии в плане представлений о Вселенной появилась возможность переосмыслить эти понятия. В расчет берутся и другие законы физики, основанные на космической инфляции.

Для начала обратимся к краткому обзору стандартной космологии Большого взрыва, являющейся до открытия инфляции доминирующей теорией. В соответствии с ней возникновению Вселенной предшествовала колоссальная катастрофа, разразившаяся примерно четырнадцать миллиардов лет назад. При этом Большой взрыв произошел одновременно везде, а не в определенном каком-либо месте Вселенной. На тот момент не существовало ни звезд, ни галактик, ни атомов. Вселенная была наполнена очень горячим плотным быстро растворяющимся сгустком излучения и материи. При увеличении в размерах он остывал. Спустя три минуты после Большого взрыва снижение температуры достигло отметки, достаточной для формирования ядер атомов, что по прошествии полмиллиона лет привело к объединению ядер и электронов в электрически нейтральные атомы, а Вселенная стала прозрачной для света. Благодаря этому на сегодняшний день мы способны регистрировать свет от огненного сгустка, исходящего из всех небесных направлений. Мы называем его фоновым космическим излучением.

Изначально огненный сгусток с точки зрения однородности был практически идеален. Однако некоторые области имели плотность, чуть большую по сравнению с другими, и при росте все больше стягивали из окружающего пространства вещества. Так за миллиарды лет образовались новые галактики. И сравнительно, по космическим меркам, недавно появились мы, земляне.

В поддержку теории Большого взрыва выступают и данные наблюдений, убеждающие нас в корректности рассуждений. Во-первых, мы замечаем, как далекие галактики с достаточно большой скоростью устремляются от нас, что говорит о расширении Вселенной. Помимо этого в рамках теории Большого взрыва возможно объяснение распространенности легких элементов (таких как литий или гелий) во Вселенной. Но, что самое главное: дымящийся ствол Большого взрыва - это ничто иное как фоновое космическое излучение, являющееся послесвечием первичного огненного шара, которое позволяет наблюдать его и исследовать.

В итоге, у нас есть вполне успешная теория, которая все же не дает ответа на некоторые весьма интригующие вопросы, затрагивающие историю начального состояния Вселенной сразу после Большого взрыва. Что послужило причиной поднятия высокой температуры Вселенной? Из-за чего Вселенная стала расширяться, и каково ее прошлое до Большого взрыва? Ответ на эти вопросы таится в рассмотрении выдвинутой 28 лет назад теории Алана Гута.

Инфляция Космоса

В центре этой теории - своеобразная форма материи, которая называется ложным вакуумом, проще говоря, пустое пространство. Однако физики, занимающиеся изучением элементарных частиц, рассматривают вакуум в качестве физического объекта, обладающего энергией и давлением, и способного находиться в различного рода энергетических состояниях. При этом они дают им название состояний разных вакуумов, которые в зависимости от характеристик свойств элементарных частиц способны существовать в них.

Связь между вакуумом и частицами сродни связи между звуковыми волнами и веществом, по которому они простираются: скорость звука в различных материалах неодинакова. Человек живет в весьма низкоэнергетическом вакууме, отсюда и появилось просуществовавшее долгие годы убеждение физиков о нулевой энергии нашего вакуума. Но недавно в ходе наблюдений было выяснено, что он все же имеет немного отличную от нуля энергию, которая была впоследствии названа темной энергией.

По предсказаниям современных теорий элементарных частиц, кроме нашего вакуума есть и целый ряд других так называемых ложных высокоэнергетических вакуумов. Одновременно с тем, что ложный вакуум характеризуется достаточно высокой энергией, он еще и имеет высокое отрицательное давление, получившее название натяжения. Это примерно как растянуть кусочек резины: в результате появляется натяжение, то есть направленная внутрь сила, заставляющая резину сжиматься.

И все же самым необычным свойством ложного вакуума является отталкивающая гравитация. В соответствии с общей теорией относительности Эйнштейна возникновение гравитационных сил связано не только с массой (энергией), но и с давлением. Гравитационное притяжение вызвано положительным давлением, соответственно отталкивание - отрицательным давлением. Если же это вакуум, то здесь наблюдается преобладание отталкивающего действия давления над притягивающей силой, связанной с его энергией. В результате получается отталкивание, причем, чем больше энергия вакуума, тем отталкивание сильнее. Еще одной характеристикой ложного вакуума является его нестабильность и способность достаточно быстро распадаться. При этом он превращается в низкоэнергетический вакуум. Излишки энергии идут на создание огненного сгустка элементарных частиц. Обратим внимание, что Алан Гут специально для своей теории не стремился изобрести ложный вакуум с его необычными свойствами. Существование его идет из физики элементарных частиц. Ученый лишь выдвинул предположение, что в начале своей истории пространство Вселенной пребывало в состоянии ложного вакуума. При подобном раскладе отталкивающая гравитация, которая им вызывается, привела бы к весьма быстрому ускоряющемуся расширению Вселенной. В случае такого типа расширения, названного Гутом инфляцией, появляется характерное время удвоения, увеличивающее размеры Вселенной вдвое.

Три десятка лет назад в научном мире стала распространяться так называемая теория инфляции. В центре данной концепции находится представление об особой форме материи, получившей название «ложного вакуума». Он обладает очень высокими энергетическими характеристиками и большим отрицательным давлением. Самое удивительное свойство ложного вакуума – отталкивающая гравитация. Заполненное таким вакуумом пространство способно быстро расширяться в разные стороны.

Спонтанно возникающие «пузыри» вакуума распространяются со скоростью света, но практически не сталкиваются между собой, ведь пространство между такими образованиями расширяется с той же скоростью. Предполагается, что человечество живет в одном из множества таких «пузырей», которые воспринимаются как расширяющаяся Вселенная.

С обыденной точки зрения множественные «пузыри» ложного вакуума – это череда иных, вполне самодостаточных . Загвоздка в том, что непосредственных материальных связей между этими гипотетическими образованиями не существует. Поэтому перебраться из одной вселенной в другую, увы, не получится.

Ученые делают вывод о том, что число вселенных, имеющих вид «пузырей», может быть бесконечным, причем каждая из них без всяких ограничений расширяется. Во вселенных, никогда не пересекающихся с той, где находится Солнечная система, формируется бесконечное число вариантов развития событий. Кто знает, может быть в одном из таких «пузырей» в точности повторяется история Земли?

Параллельные вселенные: гипотезы требуют подтверждения

Не исключено, впрочем, что иные вселенные, которые условно можно назвать параллельными, основаны на совершенно иных физических принципах. Даже набор фундаментальных констант в «пузырях» может существенно отличаться от того, который предусмотрен в родной Вселенной человечества.

Вполне возможно, что жизнь, если она является закономерным результатом развития любой материи, в параллельной вселенной может быть построена на невероятных для землян принципах. Каким тогда может быть Разум в соседних вселенных? Об этом пока могут судить только фантасты.

Проверить гипотезу о существовании другой вселенной или даже множества таких миров прямым образом не представляется возможным. Исследователи работают над сбором «косвенных улик», ищут обходные пути для подтверждения научных предположений. Пока что у ученых имеются лишь более или менее убедительные догадки, построенные на результатах изучения реликтового излучения, проливающего свет на историю возникновения Вселенной.

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс . Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во .

Множество Млечных Путей

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью . Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами () и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Наконец, в 1998 в ходе исследования расстояния до было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.